처음 처음 | 이전 이전 | 1 | 2 |다음 다음 | 마지막 마지막
양자 : 101가지 질문과 답변
케네스 W. 포드 지음, 이덕환 옮김 / 까치 / 2015년 10월
평점 :
장바구니담기


문제는 규모(scale)이다. 우리의 거시 세계(large scale world)라고 해서 양자물리학의 원자보다 더 작은 세계에서보다 덜 유효한 것은 아니다... 그러나 큰 규모에서 나타나는 특성에 대한 양자적 기반은 직접 관찰하기 어렵게 숩겨져 있다. 양자물리학은 원자나 원자보다 더 작은 영역에서나 그 모습이 나타난다.(p21)<양자 : 101가지 질문과 답변> 中

양자역학(量子力學, quantum physics)이 적용되는 세계는 우리가 직접 관찰하기 어려운 미시 세계(small scale world)다. 때문에 우리는 이 세계에 적용되는 법칙들은 제대로 이해하지 못한다. 때문에, 양자물리학의 세계를 이해하기 위해 우리는 파동(wave), 입자(particle), 확률(probability)의 개념을 사용한다.

양자물리학의 근본적인 문제로 바로 넘어가보자. 원자 속에 들어 있는 전자는 입자일까, 아니면 파동일까? 일반적인 답은 두 가지 모두라는 것이다. 전자는 그 자체가 전체 공간에 확률 파동으로 퍼져 있는 입자이다. 보는 방법에 따라서 전자는 확실한 형태가 없는 구름처럼 보이기도 하고, 입자처럼 보이기도 한다... 파동-입자 이중성은 시각화하기가 어렵거나 불가능할 수도 있다.(p32) <양자 : 101가지 질문과 답변> 中

입자는 파장을 가지고 있다. 입자는 회절과 간섭을 한다. 입자는 파동함수를 가지고 있다. 1924년 드 브로이가 유명한 방정식을 제시한 이후 양자물리학의 전체 역사는 물질의 파동성을 기반으로 발전했다. 파동이 물리적 세계의 핵심에 있는 것은 분명하다. 그러나 이상하게도 "파동이 꼭 필요할까?"라는 질문에 대한 답은 '전혀 그렇지 않다'이다. 파동-입자 이중성(wave-particle duality)은 입자가 생성되거나 소멸될 때는 입자처럼 행동하고, 그 중간에는 파동처럼 행동한다는 것이다. 측정은 입자라는 사실을 보여준다. 측정의 결과가 무엇인지에 대한 예측에는 파동이 이용된다. 입자는 실재(reality)를 나타낸다.(p272) <양자 : 101가지 질문과 답변> 中

우리는 미시 세계의 법칙을 거시 세계의 언어로 표현할 때, 파동-입자 이중성, 불확정성 원리 등의 복잡한 개념을 가져오게 된다. 만약 우리가 미시의 세계에 살고 있다면 그때에도 이러한 설명이 필요할 것일까. 그렇지는 않을 것이다. 미시의 세계는 불확실성이 확실한 세계일테니까.

불확정성 원리(不確定性原理, uncertainty principle)는 위치가 더 정밀하게 결정되면 될 수록, 그 순간의 운동량은 그만큼 덜 정확하게 알려지게 되고, 그 역도 성립한다는 것이다.... 불확정성 원리는 양자물리학의 핵심이라고 알려져 있다. 고전물리학에서는 불확정성 원리에 대응하는 원리가 없기 때문이다.(p263) <양자 : 101가지 질문과 답변> 中

내가 속하지 않는 세계를 이해하는 것은 노력을 필요로 한다. 내가 알던 상식(common sense) 대신 새로운 것을 받아들이는 것은 과거의 내가 부정하는 듯한 고통을 가져오기도 한다. 그렇지만, 내 자신의 고통여부와 관계없이 사실은 실재한다. 이러한 사실을 받아들일 때 우리는 한단계 성장하게 된다.

언젠가 끈이론이 힘을 얻게 될 때의 "새로 개선된" 표준 모형(standard model)에서는 기본 입자의 수가 24개보다 줄어들 것이고, 4번째 힘인 중력도 함께 통합될 것이다.(p56)<양자 : 101가지 질문과 답변> 中

양자역학을 통해 우리는 감각 경험 (感覺經驗)이 절대진리가 될 수 없음을 확인할 수 있고, 물리학이 우리에게 주는 의미가 단순한 수식(數式)이상의 것임을 깨닫게 된다. 그리고, 우리가 물리학을 공부해야 하는 이유는 이것으로 충분하지 않을까.

댓글(0) 먼댓글(0) 좋아요(25)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 



나는 우주가 과학의 법칙에 따라서 무(無)에서 자연스럽게 생겼다고 생각한다. 과학의 근간이 되는 기본 가정은 과학적 결정론이다. 일단 우주의 초기 상태가 주어지면, 이후의 그 진화는 과학의 법칙이 결정한다. 이 법칙은 신이 결정한 것일 수도, 그렇지 않은 것일 수도 있다. 그러나 신은 법칙에 간섭하거나 법칙을 깰 수 없다. 만일 그렇다면 그것은 법칙이 아니다. 이렇게 되면 신에게 남는 것은 우주의 초기 상태를 선택할 수 있는 자유뿐인데, 이 초기 상태마저도 지배하는 법칙이 존재하는 것 같다. 그렇다면 신은 애초에 아무런 자유도 가지지 못하게 된다.(p62)

시간을 아무리 거슬러올라가도 빅뱅 이전으로는 갈 수 없다. 빅뱅 이전에는 시간이 없었기 때문이다. 이렇게 해서 우리는마침내 원인이 없는 무엇인가를 발견했다. 원인이 존재할 수있는 시간 자체가 없기 때문이다. 나에게 그것은 창조자가 존재할 가능성이 없다는 뜻이다. 창조자가 존재할 시간 자체가 없기 때문이다.(p73)

허수 시간에서 경계가 없다는 것이 우주의 경계조건이라면, 우주는 단 하나의 과거만 가지고 있지 않을 것이다. 허수 시간에는 수많은 역사들이 있고 그 역사들 각각은 진짜 시간에서의 역사를 결정할 것이다. 그렇게 되면 우주에 대해서 과잉 역사들이 넘쳐나게 될 것이다. 그럼 무엇이 우주의 가능한 역사들 중에서 지금 우리가 살고 있는 특별한 역사의 집합을 선택한 것일까?(p94)

간편하고 우리가 가진 능력으로 지금도 가능한 방법은 기계를 보내는 것이다. 이 기계는 장거리 성간(星間) 여행을 견디도록 설계된다. 이 기계 장치가 새로운 별에 도착하면, 그 별에 착륙해서 채굴을 하고 더 많은 기계를 제작하는 것이다. 그리고 새로 제작된 기계들이 더 많은 별들을 향해 떠난다. 이 기계들이 화학적 고분자가 아닌 전자 소자 기반의 새로운생명 형태가 될 것이며, 궁극적으로는 DNA 기반의 생명을 대체할 것이다. 마치 DNA가 원시 형태의 생명체를 대체했던 것처럼.(p125)

 우리가 새로운 우주 시대에 진입하고 있다는 사실은 분명하다. 최초의 민간 우주비행사는 선구자들이 될 것이고, 최초의 민간 우주여행은 대단히 비쌀 것이다. 그러나 시간이 흐르면 지구에 사는 사람들 중 대부분이 우주여행을 할 수있게 되는 것이 나의 소망이다. 점점 더 많은 사람들이 우주로 나가게 되면, 지구 위에서의 우리의 지위와 지구를 관리하는 관리자로서의 책임에 새로운 의미를 부여하고 우주 안에서의 우리의 현재와 미래를 인식하는 데에 도움이 될 것이다. 그리고 나는 우리의 궁극적인 운명이 우주에 있다고 믿는다.(p233)


댓글(2) 먼댓글(0) 좋아요(28)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
2019-11-25 12:17   URL
비밀 댓글입니다.

2019-12-11 17:27   URL
비밀 댓글입니다.
 


 고전 물리학이라는 단어는 양자 역학의 출현 이전의 물리학을 일컫는다. 고전 물리학은 양자 역학적인 불확정성이 중요하지 않은 모든 현상을 지배하는 일련의 원리들과 규칙들이다. 그러한 일반 규칙들을 고전 역학이라 부른다. 고전 역학이 하는 일은 미래를 예측하는 것이다.(p17) <물리의 정석 : 고전역학 편> 中


 레너드 서스킨드(Leonard Susskind)와 조지 라보프스키(George Hrabovsky)는 <물리의 정석 : 고전역학 편 The Theoretical Minimum: What You Need to Know to Start Doing Physics>에서 고전 물리학의 계에서부터 출발하여 해밀토니언과 라그랑지언 방정식에 이르는 개념을 설명한다. 수학에 대해 잘 모르는 독자들을 위해서 본문에서는 극한, 미적분 등 수학의 기초개념부터 설명하고 있지만, 많은 수학식은 독자들에게 부담으로 다가오는 것 또한 사실이다. 그래서, 이번 페이퍼에서는 <프린스턴 응용수학 안내서1 The Princeton Companion to Applied Mathematics 1>의 내용과 함께 곁들여 라그랑지언과 해밀토니안 방정식의 내용을 정리해 본다.


  <프린스턴 응용수학 안내서1>의 설명에 따르면, 뉴턴 역학에는 두 가지 재수식화가 있는데, 이들이 바로 우리가 살펴보고자 하는 라그랑주와 해밀토니안 방정식이다. 이들 방정식은 에너지가 보존된다는 전제 아래에서 고전역학과 양자역학의 연결고리가  되는데, 이를 보기 전 에너지 보존에 대해 살펴보도록 하자.


  종종 많은 형태의 에너지가 있으며 그 모든 에너지의 총합은 보존된다고들 배운다. 하지만 그 모두를 입자의 운동으로 환원하면 고전물리학에는 오직 두 형태의 에너지, 즉 운동 에너지와 퍼텐셜 에너지만 존재한다. 에너지 보존을 유도하는 최성의 방법은 형식적인 수학 원리로 바로 뛰어드는 것이다.(p149) <물리의 정석 : 고전역학 편> 中

 

 입자의 위치에 의해 결정되는 함수인, 시간의 영향을 받지 않는 힘 F=F(r)을 먼저 살펴보자. 그중에는 보존력이라고 하는 특별한 종류의 힘이 있다. 보존력의 중요성은 에너지 E라고 하는 보존되는 양의 존재에 있다. E(에너지)= T(운동에너지)+V(퍼텐셜에너지)로 구성된다... 보존력의 가장 간단한 예로는 용수철에 매달린 입자를 나타내는 조화 진동자가 있다. 조화 진동자는 모든 이론 물리학에서 단연코 가장 중요한 체계이다. 퍼텐셜 에너지 V에 의해 서술되는 어떠한 체계에서도, V는 안정된 평형인 점들에서 극소이다.(p606) <프린스턴 응용수학 안내서 1> 中


 정리하면, 에너지는 운동에너지와 퍼텐셜 에너지로 구분할 수 있는데, 조화 진동자는 에너지 보존을 잘 나타내는 개념이며 우리는 조화 진동자를 통해 퍼텐셜 에너지는 안정된 평형의 점들에서 극소이며, 입자는 그 평형인 점에 계속 머무른다는 의미를 발견하게 된다. 나아가, 뇌터 정리에 의해 대칭성과 보존법칙은 연결되면서, 에너지 보존은 전하량 보존으로까지 확대된다.


 회전에 대한 불변을 의미하는 공간의 등방성이 각운동량의 보존을 준다는 것도 보일 수 있다. 사실 적절하게 일반화하면, 자연계의 모든 보존법칙은 뇌터 정리(Noether's theorem)를 통하여 대칭성과 관련 있다고 볼 수 있다. 이것은 전하량의 보존과 양성자나 중성자 같은 입자의 보존을 포함한다.(p615) <프린스턴 응용수학 안내서 1> 中


 재수식화 중 첫 번째 방법인 라그랑지언 수식화는 벡터를 제거했다는 점에서 뉴턴의 접근법보다 강력하다. 시간과 공간의 좌표 상에서 두 점의 궤적을 최적의 궤적을 찾는 방법. 그 방법이 오일러 - 라그랑주 운동방정식이다. 최소 작용 원리에 의해 도출된 라그랑지언 방정식은 시간의 영향을 받지 않는다. 만약, 라그랑지언 방정식에서 시간의 영향까지 고려해야 한다면? 우리는 해밀토니안 방정식을 통해 이에 대한 논의를 이어갈 수 있다. 


 최소 작용의 원리는 각각의 순간에서 바로 다음 순간의 미래를 결정하는 미분 방정식이 될 뿐이다.(p174) <물리의 정석 : 고전역학 편> 中


 공간과 시간 속에 주어진 임의의 두 점에 대해 이 둘을 잇는 많은 궤적이 존재한다. 하지만 오직 하나만이 입자가 취하는 진짜 궤적이다. 진짜 궤적은 작용을 최소화하는, 또는 작용을 정적으로 만드는 궤적이다. 그래서 우리가 할 일은 정적인 작용의 풀이를 찾을 때까지 두 점을 잇는 모든 궤적을 조사하는 것이다. 그 원리로부터 우리는 오일러 - 라그랑주 운동 방정식을 유도했다.(p293) <물리의 정석 : 고전역학 편> 中


 여러분은 무한소의 각도 a만큼 회전할 수 있으며, 그 과정을 반복함으로써 결국에는 어떤 유한한 회전을 구축할 수 있다. 이러한 변환을 연속적이라고 부른다. 이는 연속적인 변수(회전각)에 의존하며, 게다가 그 변수를 무한히 작게 만들 수 있다.(p201)... 한 가지 주목할 만한 점이 있다. 퍼텐셜 에너지가 원점으로부터의 거리의 함수가 아니라면 라그랑지안은 무한소 회전에 대해 불변이 아니다.(p202) <물리의 정석 : 고전역학 편> 中


 시간 이동 대칭성, 또는 그의 부재가 어떻게 역학의 라그랑지안 공식에 반영되어 있을까? 답은 간단하다. 그런 대칭성이 있는 경우들에는 라그랑지안이 명시적으로 시간에 의존하지 않는다. 라그랑지안의 값은 시간에 따라 변할수도 있지만, 오직 좌표와 속도가 변하기 때문에 그렇다.(p216) <물리의 정석 : 고전역학 편> 中


 해밀토니안이 라그랑지언과 구별되는 지점은 위상공간이다. 위상공간에서는 시간의 변화가 고려되기 때문에, 무한소 회전에 대해 불변이 아닌 라그랑지언의 약점을 보완하여 궤도를 측정할 수 있다는 장점이 있다.


 위상공간의 한 점은 그 계의 미래 진행을 결정하는 데 충분하기 때문에, 위상공간의 곡선은 결코 교차하지 않는다. 다시 말해, 시간에 따른 변화가 위상공간 안에서 흐름에 의해서 제어된다는 것이다.(p615) <프린스턴 응용수학 안내서 1> 中


 구성 공간과 운동량 공간의 합은 위상 공간과 같다.(p142)... 모든 점에는 전체 운동량의 집합이 명시되어 있어서 위상 공간 속의 모든 점은 총 운동량의 값으로 특정된다. 우리는 위상 공간 속으로 들어가 각 점에 총 운동량의 딱지를 붙일 수 있다.(p146) <물리의 정석 : 고전역학 편> 中

 

 H라는 양을 해밀토니안(Hamiltonian)이라 부르며, 계의 에너지이다.(p220)... 해밀토니안이 중요한 이유는 그것이 에너지이기 때문이다. 해밀토니안은 고전 역학을 완전히 개조하기 위한 기초이며 양자 역학에서 매우 중요하다. 역학에 대한 라그랑지안 공식에서는 2차 미분 방적식이며 초기 좌표를 아는 것만으로는 충분하지 않다. 초기 속도 또한 알아야만 한다. 해밀토리안 공식에서는 위상 공간에 초점이 맞추어져 있다. 위상공간의 차원은 구성 공간 차원의 2배인 점을 명심해라. 차원의 수를 2배로 해서 우리가 얻는 게 무엇인가? 답은 운동 방정식이 1차 미분 방정식이 된다는 것이다. 쉽게 말하자면 우리가 단지 위상 공간의 초기 점들만 안다면 미래가 펼쳐져 있을 것이란 뜻이다.(p224) <물리의 정석 : 고전역학 편> 中


 <프린스턴 응용수학 안내서 1>에서는 다음과 같이 라그랑지언과 해밀턴의 관계를 설명한다. 경계치 문제에서는 라그랑지언 방정식이 보다 효과적이며, 초기기 문제에서는 해밀턴 방정식이 효과적이라는 내용과, 해밀토니언 방정식이 고전역학과 양자역학의 연결고리가 된다는 것이 이 두 방정식에 대한 설명이다.


  라그랑지언이 시간의 영향을 받으면서 해밀턴 방정식이 된다. 즉, n개의 2계 미분방정식이 2n개의 1계 미분방정식으로 바뀐 것이다. 이렇게 재구성함으로써 해밀턴의 방정식들은 경계치 문제보다 초기치 문제를 다루는 데 매우 적합하게 된다. 반면에 경계치 문제에서는 라그랑지언 수식화가 더 자연스럽다.(p616) <프린스턴 응용수학 안내서 1> 中


 해밀토니언의 진정한 가치는 고전역학의 구조에 관해서 그 수식화가 우리에게 말해 주는 것에 있다. 그 핵심은 고전역학의 기하학적 수식이고, 사교기하학의 언어를 빌리면 더 추상적으로 표현할 수 있다는 것이다. 더구나, 해밀토니언 체계는 혼돈이론과 적분 가능이론을 포함한 이후의 발전에 발판을 제공하였다. 아마도 가장 중요한 점은 해밀토니언이 물리학의 더 근본적인 이론들, 특히 약자역학과 가장 직접적인 연결고리를 제공하고 있다는 점일 것이다.(p616) <프린스턴 응용수학 안내서 1> 中


 전체적인 내용을 정리하자면, 뉴턴 역학의 두 개의 재수식화된 방정식이 고전 역학과 양자 역학을 연결하는 고리가 되는데, 라그랑지언과 해밀토니언 방정식이 바로 그들이다. 이들 방정식은 각각 구성 공간과 위상 공간을 배경으로 하지만, 해밀토니언 방정식은 그 구조 안에 시간에 대한 영향도 고려하고 있다는 점에서 라그랑지안과 차이가 있다. 한편, 라그랑지언 방정식의 재수식화는 최소 작용 원리에 의해 도출되고, 이들 모두는 에너지가 보존된다는 가정 하에서 의미를 갖는다...


 여기에서 잠시 라그랑지언 방정식이 고전역학과 양자역학의 연결고리가 된다는 뜻은 어떤 의미가 있을지 생각해보자. 이는 고전역학의 법칙인 에너지 보존의 법칙에서 도출된 라그랑지언 방정식에 최소 작용 원리가 사용된다는 것에 힌트가 있지 않을까 생각해본다. 파인만(Richard Phillips Feynman, 1918 ~ 1988)의 양자전기역학(Quantum Electrodynamics)에서는 직진하는 빛의 경로를 양자역학의 관점에서 설명하는데, 여기에서 사용되는 개념이 최소 경로 이론임을 생각해본다면, 최소 작용 원리와 최소 경로 이론의 이론적 유사성을 추론할 수 있지 않을까. 물론 틀릴 수도 있다.


 빛이 직진하는 이유 역시 양자론적으로 설명할 수 있다. 가능한 모든 경로를 다 고려했을 때, 구불구불한 경로와 그 주변의 경로를 비교해보면 소요시간의 차이가 크다. 그러나 경로 D와 같이 직선에 가까운 경로들은 그 주변의 경로와 차이가 거의 없으므로 이 근처에서 화살표는 거의 같은 방향을 갖는다. 따라서 최종 화살표의 길이는 주된 경로 D 근방의 화살표들에 의해 좌우되며, 그 결과 빛은 직진하는 듯이 보이게 된다.(p92) <일반인을 위한 파인만의 QED강의> 中


 <물리의 정석 : 고전역학 편>은 수식이 많이 나와 수학에 대해 관심있는 사람이 아니면 쉽게 읽히지 않는다. 또한, 수식 하나하나를 따라가다보면 전체적인 흐름을 놓치게 되어 물리학에 익숙하지 않은 이들에게는 어렵게 느껴진다. 그렇지만, 수식 역시 하나의 언어(言語)이며, 물리학 수식은 자연과학의 언어임을 생각한다면 단어 하나에 매이는 것보다는 전체적인 흐름을 파악하는 것이 더 중요하다 여겨진다. 그런 면에서 사전식으로 개념을 설명한 다른 책(여기서는 <프린스턴 응용수학 안내서>)과 함께 큰 줄기를 잡고 수식을 눈에 익힌다면, 물리학과 수학이 생각보다 어렵지 않음을 느끼지 않을까 생각하며 이번 페이퍼를 마무리 한다.


PS. 개인적으로는 물리학과 수학이 어렵지 않음을 느끼고 싶지만, 아쉽게도 그런 경험은 없다... 이 책의 후속편 <물리의 정석 : 양자역학편> 을 잠시 훑어보니, 삼각함수와 미적분은 보이지 않는 대신 확률이 눈에 많이 띈다. 이번에는 <수학의 독본>시리즈를 곁에 두고 함께 볼까 고민 중이다...




댓글(8) 먼댓글(0) 좋아요(45)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
북다이제스터 2019-09-30 20:55   좋아요 1 | 댓글달기 | URL
너무 어려워요. ㅠㅠ

겨울호랑이 2019-09-30 21:24   좋아요 0 | URL
네... 필자들이 일반 대중의 수학 실력을 너무 과대 평가해서인지 아주 깊게 들어갔네요. 귀여운 표지와 두께에 속아서는 안 될 책입니다..ㅠㅠ

갱지 2019-10-01 12:35   좋아요 1 | 댓글달기 | URL
-전체적인 흐름을 파악하는 것이 중요하다-동감입니다:-)

겨울호랑이 2019-10-01 12:37   좋아요 1 | URL
감사합니다. 갱지님 쾌청한 가을 오후 되세요!^^:)

syo 2019-10-01 19:09   좋아요 1 | 댓글달기 | URL
이제 호랑이님은 그냥 리스펙할래요..... 고개가 절로 숙여져서 페이퍼를 다 읽기가 난망할 지경이네요. 알라딘에서 라그랑지언과 해밀토니언이라는 단어를 만나게 될 줄이야..... 최고시다.

겨울호랑이 2019-10-01 19:47   좋아요 0 | URL
아이고 아니에요. 저도 잘 모르는 걸요. 많은 부분 놏치고 겨우 뼈대만 잡아보았습니다. 여기에 살을 붙여 나가야겠지요... syo님 칭찬에 많이 쑥스럽습니다.^^:)

짜라투스트라 2019-10-01 20:39   좋아요 1 | 댓글달기 | URL
이게 도대체 무슨 소리인지.. 경이롭네요 ㅋㅋㅋ

겨울호랑이 2019-10-01 21:03   좋아요 0 | URL
제가 좀 더 잘 알았다면 더 깔끔하게 정리했을텐데, 아직 많이 부족합니다. 그래도, 좀 더 많이 접하다보면 수식도 점차 눈에 들어오지 않을까 기대해 봅니다.^^:)
 


 1850년대에서 1890년대 사이에 잉글랜드에서 케이프타운까지 여행하는 데 걸리는 시간은  42일에서 19일로 줄었다. 증기선은 훨씬 빠를 뿐 아니라 외양도 커졌다. 그래서 같은 기간에 평균 총 용적 톤수는 대략 두 배가 되었다. 1870년대에 이르면 인도에서 오는 전보가 몇 시간 안에 이곳에 도착할 수 있었고, 여왕은 전보를 주의 깊게 읽었다. 이것은 빅토리아 여왕 치세 동안 세계에서 무슨 일이 일어났는지를 완벽하게 보여준다. 세계는 축소되었다... 1840년대 말에 이르자 전보가 육상 통신에 혁명을 일으킬 것이라는 사실이 명백해졌고, 1850년대에 이르면 인도의 건설 공사는 전신이 폭동을 진압하는 데 결정적인 역할을 할 정도로 충분히 발전했다. 전신 케이블과 증기선 노선은 세계를 일제히 단축시키고 통제를 더 쉽게 만든 세 개의 금속 네트워크들 가운데 두 가지였다. 세번째는 철도였다.(p242) <제국 Empire> 中


[그림] 빅토리아 여왕 시기 영국제국(출처 : http://www.victorianschool.co.uk/empire.html)


 니얼 퍼거슨(Niall Ferguson, 1964 ~ )은 <제국 Empire>에서 영제국(British Empire)의 전성기인 19세기 말 제국이 얼마나 효율적으로 통제될 수 있었는가에 대해 서술한다. 저자는 증기선, 전보 그리고 철도의 도입을 통해 유럽 제국주의가 이전 제국과는 달리 오랜 기간 패권을 유지할 수 있었다는 점을 책을 통해 강조하는데, 우리는 이를 통해 과학과 제국주의의 결합에 대해 확인하게 된다. 그렇지만, 과학이 가져온 변화는 기술적인 면에 그치지 않는다.


 1850년대에 시작된 과학이 가져온 이러한 변화는 처음에는 인프라 확충의 모습으로 나타났으나, 시스템이 구비된 19세기 말에는 시스템의 통합이 요청되었고, 이를 위한 새로운 이론(理論)이 요구되었다. 이러한 요청에 대해 <아인슈타인의 시계, 푸앵카레의 지도 - 시간의 제국들 Einstein’s Clocks, Poincare’s Maps: Empires of Time>은 물리학이 상대성 이론을 통해 어떻게 응답했는가를 잘 보여준다.

 

 1860년대와 1870년대에 좌표화된 시간은 도시와 철도 시스템에 더 깊숙이 파고들었다. 동기화된 시계는 언론의 환대를 받고 길거리에 등장하고 천문대와 실험실에서 연구 대상이 되면서 이제 더 이상 이색적인 과학이 아니었다. 동기화된 시계는 기차역과 동네와 교회로 거미줄처럼 뻗어나가, 과거에 전력과 하수시설과 가스가 그러했듯이 대중의 일상생활에 스며들어 근대의 도시적인 삶을 순환하는 물과 같은 존재가 되었다.(p140) <아인슈타인의 시계, 푸앵카레의 지도> 中


 독일인들만이 아니라 그들의 적인 프랑스인들도 1870년에서 1871년에 있었던 보불전쟁이 끝나고 나서, 폰 몰트케가 시간이 정확하게 맞추어져 있는 철도를 제대로 활용한 것이 프랑스 제2제정(1852 ~ 1870)을 무너뜨렸고 유럽 권력의 균형을 근본적으로 바꾸어 놓았던 것을 인식하게 되었다.(p206) <아인슈타인의 시계, 푸앵카레의 지도> 中


 양(量)적인 팽창이 완료된 후 이의 효율적인 활용이 국력(國力)임을 절감한 유럽 정치인들은 시간의 통합의 중요성을 깨닫게 된다. 세계 각지에 흩어져 있는 식민지를 효율적으로 통제하기 위해서는 제국 내 시간이 통합될 필요가 있었고, 1905년의  알베르트 아인슈타인(Albert Einstein, 1879 ~ 1955)의 상대성 이론은 이들 정치인들에게 통합의 실마리를 던져주었다.

 

 거대 정치 조직은 행정 효율성과 관련된 공간의 문제, 연속성과 관련된 시간의 문제에 대한 해결책을 함축하고 있다. 구조의 유연성은 인재 발굴에 대한 지속적인 관심, 지식 독점에 대한 공격과 관련이 있다. 또한 안전성은 통치의 발전 가능성뿐 아니라 통치 기관의 한계와도 관련이 있다.(p285) <제국과 커뮤니케이션> 中


 파바르제는 파리에 토대를 둔 국제 도량형국이 두 가지 근본적인 양인 공간과 질량을 정복하기 시작했음에도 불구하고, 마지막 첨단 분야인 시간이 아직 개척되지 않고  있다고 주장했다. 시간을 정복하는 방법은 점점 확장되는 전기 네트워크를 창조하는 것으로, 이 전기 네트워크를 천문 관측소와 연결된 모시계에 덧붙여서 계전기들이 그 신호를 증폭시켜 보니면, 대륙 전체에 있는 호텔과 저잣거리와 교회의 뾰족탑의 시계를 자동으로 맞출 수 있을 것이다.(p294) <아인슈타인의 시계, 푸앵카레의 지도> 中


 시간에 대해, 그리고 원거리 동시성에 대해 이야기하려면 먼저 시계를 동기화 同期化하는 과정이 필요하다. 그리고 만일 두 개의 시계를 동기화하려면, 하나의 시계에서 다른 시계를 향해 신호를 쏘아 보낸 후에 그 시계에 도착한 신호의 시간을 조정해야 한다. 이보다 더 간단하게 설명할 수 있을가? 시간에 대한 이 절차상의 정의 덕분에 상대성 이론 퍼즐의 마지막 조각이 맞춰졌고, 그 이후 물리학은 완전히 새롭게 변화한다.(p20) <아인슈타인의 시계, 푸앵카레의 지도> 中


 <아인슈타인의 시계, 푸앵카레의 지도>에서는 물리학에 의한 시간 통합의 과정이 잘 서술되어 있다. 데카르트(Rene Descartes, 1596 ~ 1650)에 의해 직교좌표계가 도입되었고, 칸트(mmanuel Kant, 1724 ~ 1804)에 의해 직교좌표계에 시간과 공간이 개별 변수로 할당된 근대 이후 시간과 공간의 기준점이 되기 위한 각국의 노력은 치열해졌다. 


 [사진] Space and Time(출처 : https://www.archive.scienceandnonduality.com/lost-in-space-and-time/)


 결국 공간은 프랑스의 미터(meter)법에 의해, 시간은 영국 그리니치(Greenwich) 천문대 기준으로 본초자오선이 설정되면서 세계의 시간과 공간의 기준점은 영국과 프랑스로 분할되었고, 이를 기준으로 세계는 통합 출발선에 서게 되었다.


 20세기로 접어들 무렵 유럽과 북아메리카는 좌표화된 십자선들로 구획이 나뉘었다. 열차 선로, 전신선, 기상 관측 네트워크, 경도 측량, 이 모든 것들이 관찰 가능하고 점차 보편화되어가던 시계 시스템 아래 놓이게 되었다. 이러한 맥락에서 볼 때 푸앵카레와 아인슈타인이 도입한 시계 좌표화 시스템은 세계의 기계였다. 처음에는 상상으로만 가능했던 동기화된 시계들의 방대한 네트워크가 구현되었고, 21세기로 넘어갈 무렵에는 범선이 끌어주는 해저케이블 네트워크가 되었고 위성을 수신하는 극초단파 방송망이 되었다.(p370) <아인슈타인의 시계, 푸앵카레의 지도> 中


 시간이 시간 기록과 완전히 일치되었던 적은 한 번도 없었고, 지구 전역에 절차나 거리상의 동시성을 기술정치적으로 확립해주는 통일 시간이 있었던 적도 전혀 없었다. 이전의 평범했던 시스템들과 마찬가지로 아인슈타인의 시계 동기화 시스템은 시간을 절차적인 동기화 문제로 한정시켜 전자기장 신호로 시계들을 연결했다. 사실상 시계 단위에 대한 아인슈타인의 계획은 여기서 더 나아가 도시, 국가, 제국, 대륙, 세계를 넘어 마침내는 현재 전체적으로 유사 데카르트적인 우주라고 일컫는 무한대까지 확장하는 것이었다.(p373)  <아인슈타인의 시계, 푸앵카레의 지도> 中


 시간과 공간의 통합이 가져온 변화는 생각보다 컸다. 제국의 역량을 하나로 결집시킬 수 있었던 열강들은 자신들의 힘을 과신하고 충돌한 결과 제1차 세계대전, 제2차 세계대전을 통해 무너질 수 밖에 없었다. 이를 대신한 새로운 제국인 미국은 과거의 제국과는 문화(culture)를 통해 자신의 지배력을 유지하게 되는데, 이러한 변화의 출발에는 세계의 시간과 공간의 통합이 있었음을 생각하게 된다.


 중심에서 방출된 전자기 신호가 바로 옆방이든 아니면 수백 킬로미터 떨어진 곳이든 떨어져 있는 지점들에 다다르는 것, 이것을 동시라고 정의한 사람이 비단 아인슈타인과 푸앵카레만은 아니다... 전기 신호의 교환을 바탕으로, 철도 계획자들은 열차 시간표를 짜고, 제독들은 군대를 소집하고, 전신 교환원들은 사업 거래를 타전하고, 측지학자들은 지도를 그린다.(p349)... 무선 기술은 파리와 파리 근료의 모든 지역에 시간을 분배해줄 것이고, 낡은 증기 시스템뿐 아니라 전신을 전달하는 전기 시간에 사용되는 불편한 지상의 전신선들을 몰아낼 것이었다.(p350)  <아인슈타인의 시계, 푸앵카레의 지도> 中


 미국에서는, 신문이 공간을 지배한다는 점 때문에 커뮤티케이션 독점을 크게 발달시켰으며 이는 시간 문제의 경시를 의미했다... 공간을 강조하는 종이 편향과 지식 독점은 새로운 매체인 라디오의 발달로 견제를 받았다. 그 결과는 시간 문제에 대한 관심 증대, 계획 성장과 사회주의 국가 등장으로 나타났다. 커뮤니케이션 편향을 막을 수 있는 정체를 발전시킬 수 있는 능력과 공간 및 시간의 의미에 대한 평가는 제국의 문제, 서구 세계의 문제 과제로 남겨 놓을 수 있다.(p286) <제국과 커뮤니케이션> 中


 <아인슈타인의 시계, 푸앵카레의 지도>는 이처럼 상대성 이론이 가져온 인식의 변화가 20세기 초 세계를 어떻게 바꾸었나를 보여준다. 그리고, 여기에서 시작된 변화는 인터넷(Internet)을 통해 세계가 통합된 오늘날도 유효하다는 점에서 우리는 물리학의 상대성 이론과 생물학의 진화론을 새롭게 바라볼 필요가 있음을 새삼 깨닫게 된다...


댓글(2) 먼댓글(0) 좋아요(41)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
2019-06-18 11:45   URL
비밀 댓글입니다.

2019-06-18 11:52   URL
비밀 댓글입니다.
 

 

 우든북스 Wooden Books는 자연의 질서와 패턴에 관해 서술한 작은 책 10권으로 구성된 전집이다. 작지만 알찬 내용이 담긴 이 전집에서 필립 볼 박사의 형태학 3부작과 관련된 내용이 이번 페이퍼의 주제다. 우든 북스 전체 10권 중 직간접적으로 3부작과 연관된 내용은 <대칭성, 질서의 원리 Symmetry : The Ordering Principle>, <황금분할 The Golden Section>, <이 理, 자연의 역동적 형태 Li : Dynacmic Form in nature>, <하모노그래프 Harmonograph>에서 찾을 수 있는데, 이 중에서도 가장 기본이 되는 '대칭성'에 대한 이야기부터 시작해 보자.

 

 대칭성은 항상 분류, 범주화 그리고 관찰되는 규칙성과 관련이 있다. 대칭성은 제약이다. 그러나 대칭성 자체는 제약되어 있지 않다. 즉 대칭성 원리가 적용되지 않는 곳은 없다. 게다가 대칭성 원리는 평온, 즉 시끌벅적한 세상을 초월한 고요함의 특성이 있다. 그러면서도 어떻게든 항상 변화, 소란, 운동과 관련되어 있다.(p7) <대칭성, 질서의 원리> 中


 <대칭성, 질서의 원리>에서는 대칭성을 설명할 때, 회전과 반사를 통한 합동성과 주기성의 개념으로 이를 설명한다. 360도의 각도 내에서 몇 번의 회전을 통해 동일한 모양이 나타날 수 있는지, 그리고 이러한 패턴이 나타나는데 일정한 규칙성이 존재하는가가 대칭성을 판단하는 근거가 된다는 것이다.


 대칭성을 보이는 수많은 다양한 대상들이 가진 공통적인 요소가 무엇인지 이해하려면 먼저 합동성과 주기성의 개념부터 이해해야 한다. 대부분의 대칭적 대상은 어떤 형태로든 이런 성질이 있으며 이런 성질이 빠지면 대칭성이 축소되거나 사라진다.(p8)... 대칭성을 표현하는 또 다른 두 가지 기본적인 방식이 있다. 회전과 반사가 그것이다. 이런 대칭성의 방식들은 합동이라는 개념을 이용한다.(p10) <대칭성, 질서의 원리> 中


 [사진] 대칭성(출처 : <대칭성, 질서의 원리> 中)


 우리 주변에서 볼 수 있는 규칙성을 것은 자연계에 존재하는 4가지 힘(강한 핵력, 전자기력, 약한 핵력, 중력) 중에서 가장 약한 힘인 중력(gravity)이다. 비록 약한 힘이지만, 중력에 의해 만들어진 규칙에 적용되는 법칙은 엔트로피(entropie) 최소화 법칙이고, 이로 인해 생명체는 생명을 영위할 수 있는 방향으로 진화될 수 있었다. 이런 관점에서 본다면, 우리 생명체들을 모두 가이아(Gaia)에게 빚을 지고 있는것은 아닌가 생각하게 된다.


 대칭적인 규칙성은 한 가지 주된 힘에 의해 만들어졌다. 즉 표면장력에 의해 만들어진 물방울을 제외한 나머지 것들은 모두 중력(중력 역시 구형 대칭성을 가지고 있다)에 의해 모양이 만들어졌다.... 실질적으로 구(球)는 주어진 부피당 표면적이 가장 작으며, 이 때문에 많은 과일들이 구형을 하고 있다. 또 구는 어느 쪽에서 봐도 동일한 모양이기 때문에 포식자들로부터 자신을 방어하는 가장 자연스런 형태이다.(p18) <대칭성, 질서의 원리> 中


 구형 물체를 쌓는 가장 확실한 방법은 이들을 삼각형 또는 사각형으로 배열하는 것이다. 이런 배치는 분명 공간을 규칙적으로 분할하는 것과 관련이 있다. 과일을 이 가운데 어떤 패턴으로 배열하든지 두 번째 층을 첫 번째 층에 생긴 틈 이외의 곳에 쌓기는 쉽지 않다. 글자 그대로 최소 에너지를 가진 패턴만이 남게 된다.(p22) <대칭성, 질서의 원리> 中


 그렇다면, 삼각형 또는 사각형으로 배열된 물체들은 완벽한 대칭을 이루고 있을까? 현실은 그렇지 않다. '대칭성은 제약이 없다'는 말처럼 이들이 서로간 관계를 맺는 구조 자체는 차라리 무질서에 가깝지만, 이러한 '무질서'가 반복되면서 새로운 '질서'가 만들어 진다. 프랙털(fractal)이라 부르는 기하학 구조에서 우리는 부분과 전체 사이의 '자기 유사성'을 찾을 수 있다.


  많은 자연적인 형성물들은 이들이 고도로 복잡하고 불규칙하게 보일지라도 우리가 인식할 수 있는 통계적인 자기유사성을 지고 있다. 이것은 광범위한 스케일에 걸쳐,또는 프랙털의 정도를 정확히 측정했을 때 이들이 같게 보인다는 것을 의미한다... 수학에서 많은 종류의 프랙털들은 크기에 제약을 받지 않으며 이론적으로 무한대의 크기를 가질 수 있다. 하지만 실제 세계에서, 특히 환경 적응이 목적인 생물들에 있어 이런 일은 거의 일어나지 않는다.(p40) <대칭성, 질서의 원리> 中


 [사진] 매력적인 프랙털(출처:  <대칭성, 질서의 원리> 中)


 모든 종류의 형태는 구성 요소들이 서로 연결되어 이루어지며, 이것들이 해체되면 궁극적으로 형태는 스러진다.(p10)... 관련 없는 형태들 사이의 유사성은 거시에서 미시에 이르는 모든 크기 규모에서 나타난다. 이것은 유사성이라는 특성이 자연이 가진 근본적 속성이라는 사실에 대한 또 하나의 증거가 된다.(p12) <이 理, 자연의 역동적 형태> 中


 이러한 프랙털 구조를 우리는 일상에서 확인할 수 있는데, 이러한 구조를 동양(東洋)에서는 '이 理'라 부른다. 반(反) 엔트로피의 결과로 나타난 '이'는 '자연 自然 스스로 그러하다'으로 해석되는데, '이'를 통해서 우리는 아름다움에 대한 동서양의 차이를 확인할 수도 있다.


 '이 理'는 지형을 창조하는 힘처럼, 창조와 파괴의 과정에 깊이 연루되어 있지만 본질적으로 창조적이거나 파괴적이지는 않다. 다만 그러한 뿐이다.(p24) <이 理, 자연의 역동적 형태> 中


[사진] 잔금(출처 : <이 理, 자연의 역동적 형태> 中)


 동양에서는 오랫동안 도자기 표면에 생긴 잔금에 미적 가치를 두었으나 서구에서는 그것을 잘못된 결함, 즉 문제로 받아들였다는 것은 두 세계의 가치관이 얼마나 다른지 말해준다... 모든 잔금은 축적되어 있던 스트레스가 분출되어 나가는 통로, 곧 힘이 가는 선이라 할 수 있다. 눈에 보이지 않는 에너지를 인식하는 동양문화에서 잔금을 매력적으로 본 것도 이런 이유에서일 것이다.(p26) <이 理, 자연의 역동적 형태> 中 


 또한, <도덕경 道德經>40장 에서 天下萬物生於有 有生於無'(만물은 유에서 살고 유는 무에서 산다)는 구절을 연상시키는 다음의 설명을 통해 우리는 질서와 무질서가 만들어내는 균형을 '경계'에서 발견할 수도 있다. '무질서라는 질서' 또는 '질서 라는 무질서'가 만들어 내는 세계는 일정 비율로 반복되기에 우리는 아름다움을 느낄 수 있고, 이른바 황금 비율이라 불리는 미(美)의 공식을 통해 예술가들은 아름다움을 표현해 왔다.

 

 자연은 증가하고 감퇴하는 주기와 리듬에 따라 고동친다. 헤라클레이토스는 "상승하는 길과 하강하는 길은 같다"고 말했다... 폭발적으로 성장한 별은 내파할 때가 많고, 생명의 질서정연한 조직이 만들어 내는 음의 엔트로피는 무질서와 죽음이 만들어내는 양의 엔트로피로 상쇄된다. 카오스(Chaos 혼돈) 이론에서는 황금분할이 카오스 경계를 설정한다고 한다. 질서가 무질서로 옮아가고, 무질서에서 질서가 나오는 경계이다.(p28) <황금분할> 中


 전체와 부분의 결합은 비례적 대칭을 통해 우아하게 결합된다. 특히 황금분할을 통해 가장 효율적으로 이뤄진다. 이 단순한 분할은 자연을 움직이는 추동력인 듯하다. 자연으로 하여금 프랙털화를 통해 자기 닮음성을 지닌 부분들을 만들어내고 황금각과 피보나치 수로 이뤄진 나선을 그리며 성장하게 한다.(p32) <황금분할> 中


[사진] 황금대칭(출처 : <황금분할> 中)


 형태학 3부작에서는 대칭과 패턴 그리고 이들이 빚어낸 아름다움에 대한 이야기가 '공간 space'으로 한정되지만, 우든 북스에서는 한걸음 더 들어간다. 우든 북스 중의 <하모노그래프>에서는 음악(music)의 화음(和音)-불협화음(不協和音)의 관계 안에서 시간(time) 속에서의 엔트로피 법칙을 보여주기 때문에, 우리는 더 깊은 이야기를 넓은 범위에서 할 수 있게 되었다.

 

 음계는 어떻게 구성될까? 현을 튕길 때 나는 소리를 잘 들어보면 으뜸음뿐만 아니라 여러 음이 복합된 배음도 들을 수 있다.... 그러나 음악가들은 한 옥타브 안에서 조화음을 만들기 위해 배음보다 조금 가까이 있는 음정들이 필요하다. 알렉산더 포프는 "이해할 수 없는 온갖 불협화음"이라고 했다.... 불협화음이 증가함에 따라 대부분의 사람들이 음악에서 느끼는 즐거움은 줄어든다.(p14) <하모노그래프> 中


 영국의 과학자인 아서 에딩턴(1882 ~ 1944)은 변할 수 없는 변화의 방향을 시간의 비대칭성(과거-현재-미래)과 연계하여 '시간의 화살'이라는 그림으로 생생하게 나타냈다... 변하지 않는 물리법칙과 시간의 화살이 연계되면 세상은 놀랍도록 복잡하고, 다양하고, 아름답게 변한다.... '고립계'인 우주는 최대의 비평형상태로부터 빅뱅을 통해 어둡고 차가운 평형상태를 향해 나가고 있다. 시작과 끝 사이에서는 구조를 만들어낵 사건을 유발할 수 있는 유용한 에너지가 '쓸모없는' 에너지로 변환되는 변화가 계속해서 일어난다.(p27) <하모노그래프> 中


[사진] 시간의 화살(출처 : <하모노그래프>中)


 시간(Time) 예술인 음악 속에서 대칭성을 찾으면서 우리는 최종적으로 시공간(時空間 space-time) 속에서 대칭성을 논의할 수 있다. 이러한 점 때문에 우든북스에서 다루는 내용이 짧지만, 대칭성의 적용 범위에 대해서는 더 깊게 들어간다고 여겨진다. 


 그리고, 이로부터 우리는 아인슈타인의 상대성 이론(theory of relativity) 역시 크게는 대칭성을 설명하기 위한 이론이라는 점을 떠올린다면, 대칭성은 모든 것을 설명하는 이론의 중심에 있음을 깨닫게 된다. 아마도 이런 점 때문에 많은 학자들이 4가지 힘을 하나로 설명하기 위한 통일장이론((grand unified theory)을 도출하기 위해 그처럼 애쓰는 것은 아닌가 생각하게 된다.


 물리법칙들은 정상적인 공간의 모든 부분에서 동일하게 적용되기 때문에 평행이동 대칭성을 가지고 있다. 또 평행이동 대칭성은 근원적으로 운동량보존법칙의 결과로 나타난다. 또한 물리법칙은 시간에 따라 변화하지 않는다. 이것은 시간의 평행이동에 대해 대칭적임을 의미한다. 이 경우 또 다른 보존법칙인 에너지 보존법칙을 얻을 수 있다.(p50) <대칭성, 질서의 원리> 中


 우든북스 각 권의 책들은 매우 얇고 절반이 그림으로 이루어져 있어 쉽게 보이지만, 이처럼 내용을 들여다보면 결코 만만한 책이 아님을 확인하게 된다. 개인적으로  각각 별개의 주제로 이루어진 듯한 각 권들을 형태학 3부작의 내용과 연계시켰을 때 보다 선명하게 주제가 들어옴을 느꼈는데, 아마도 이런 경우를 두고 '구슬이 서 말이라도 꿰어야 보배'라는 말을 아닌가 싶다.

 

 우리에게 전체와 공명할 방법을 제공하고, 자기 청제성을 차근차근 더 넓게 펼쳐나가서 마침내 '하나'로 귀환하는 길을 밟게 해준다. 이 심오한 자연의 암호와 우리 자신을 연결하여 공명하는 것, 그리하여 세상을, 그리고 균형 잡힌 형상과 최고의 황금 표준들과 우리의 관계를 아름답게 하는 것은 인류의 의무다.(p56) <황금분할> 中


 조금 뜬금없지만, 개인적으로 위의 구절을 읽으며 스피노자(Benedictus de Spinoza, 1632 ~ 1677)의 범신론(凡神論)과 영원의 상하 sub specie aeternitatis가 연상되었는데, 아마도, 어제 <스피노자 선집>을 읽어서 그런 것만 같지는 않다. 구체적으로 그 이유에 대해서는 <스피노자 선집>리뷰에서 이야기하도록 하고 읽기 지루한 이 페이퍼는 이만 줄이도록 하자.




댓글(8) 먼댓글(0) 좋아요(49)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
2019-01-27 20:28   URL
비밀 댓글입니다.

2019-01-27 22:51   URL
비밀 댓글입니다.

서니데이 2019-01-27 22:45   좋아요 1 | 댓글달기 | URL
사진이 재미있는데요. 이 책에는 이런 사진들이 나오는 거군요.
잘읽었습니다.
겨울호랑이님, 즐거운 주말 보내셨나요. 따뜻하고 좋은 밤 되세요.^^

겨울호랑이 2019-01-27 22:53   좋아요 1 | URL
우든북스 책이 시각적인 내용이 많아 굳이 글을 읽지 않더라도 시각적으로도 볼거리를 많이 제공하는 느낌을 받게 됩니다. 서니데이님 감사합니다. 편한 밤 되세요!^^:)

페크(pek0501) 2019-01-28 13:07   좋아요 1 | 댓글달기 | URL
전공 냄새가 풀풀 납니당~~

겨울호랑이 2019-01-28 13:23   좋아요 1 | URL
전공이라고 하기엔 많이 부족한 글이지만 좋게 봐주셔서 감사합니다.^^:)

책읽는 희은수네 2019-03-27 10:17   좋아요 1 | 댓글달기 | URL
도서구입 전 리뷰를 보는 편인데 독서력이나 필력이 부럽습니다.전 자꾸 잊어버리고 글쓰기도 점점 더 어려워지는듯.잘 읽었어요^^

겨울호랑이 2019-03-27 10:31   좋아요 0 | URL
부족한 글 읽어주셔서 감사합니다. 책읽는 희은수네님, 오늘도 행복한 하루 되세요!^^:)
 
처음 처음 | 이전 이전 | 1 | 2 |다음 다음 | 마지막 마지막