-
-
수학독본 1
마츠자카 가즈오 지음, 김태성 옮김 / 한길사 / 1994년 1월
평점 :
<수학독본1> 은 마츠자카 가즈오가 저술한 대수학 기초개념을 다룬 책이다.
이 책을 구입한 시기는 벌써 10년 가까이 되었으니, 정말 오랫동안 내 곁에서 묵묵히 기다려준 과묵한 친구다. 사실, 전혀 읽지 않은 것은 아니었다. 적어도 2권까지는 끝까지 다 읽었고, 예시된 문제를 다 풀었고 넘어갔다.
<수학 정석>에서 모든 학생들의 책에서 공통적으로 손때가 묻은 부문은 '집합'부문이다. 미적분학 또는 삼각함수 부문보다 상대적으로 쉬운 파트이고, (사실, 우리가 쉽게 생각하는 집합 부문도 논리학과 연계되면 난이도가 급상승한다. 언어학적인 면이 부가되기 때문에 어떤 면에서는 더 까다롭다는 생각이 든다.), 작심삼일(作心三日) 시 재시작을 언제나 처음으로 하기 때문이리라. 마찬가지로, <수학독본>시리즈를 다시 읽기 시작할 때마다 <수학독본1>부터 읽었으니, 최소 5~6회독을 했으리라. 다만, 그 이후 매일 문제를 풀기 어려운 상황에서 매번 공식을 다시 암기하고 책을 읽으려는 일이 많아지게 되었다는 것이 문제였다. 그러다 보니 흥미가 많이 떨어져 책을 읽는 속도 역시 자연 감소하게 되었고, 서서히 뒤로 밀리게 되었다.
다시 수학책을 집어들게 된 계기는 '철학'과의 연계성 때문이었다. 그리스 철학에 있어서 '기하학'에 대한 이해 없이는 많은 부문을 놓치게 되는 것 같다. 특히, 피타고라스에게 많은 영향을 받은 플라톤의 저서에서는 그런 사실을 절감하게 된다. 이러한 필요성의 관점에서는 유클리드의 <원론>을 시작하는 것이 순서겠으나, 일단은 수의 기초인 대수학부터 시작하자는 마음에 이미 가지고 있는 <수학독본>을 재독(再讀)하게 되었다. 'mathematical mind' 는 기하학과 대수학이 큰 차이가 없기 때문이라 생각했기 때문에 내린 결정이었다.
이번에 <수학독본>을 읽으면서 얻게 된 가장 큰 소득은 내용보다 '수학을 대하는 자세'를 발견했다는 사실이다. <수학독본>을 펼치고 자연스럽게 연습장과 연필과 지우개를 챙기는 내 자신을 보면서나의 문제점을 발견하게 되었다.
내 문제는 공부하는 목적을 제대로 잡지 못한 것에서 오는 것이었다. 나는 수험생이 아니고, 서양 사상의 근간을 이루는 'mathematical mind'을 알고자 공부를 하는 것인데, 왜 과거 수험생처럼 준비를 하는 것인지. 계산이 필요하면 더 좋은 Excel program을 활용하면 될 것이고, 계산 오류에 신경쓰기보다 더 근원적인 문제를 고민해야 하는 것이 맞지 않은가.
책에 대한 접근을 다시 할 필요가 있었다.
이 책에서 다루고 있는 내용은 수, 식, 방정식과 부등식이다.
말 그대로 대수학의 기초 개념이고, 대부분의 사람들들이 읽으면 오랫만에 수학을 다시 접했다고 해도 충분히 이해할 수 있는 내용이다. 만약, 책의 내용에만 충실하다면 흥미를 가질 수 없다. 등산을 하겠다고 정식 등반장비를 갖추고 호기롭게 산에 올랐으나, 그 산이 Tracking course의 산같은 느낌이라고 할까. 적어도 <수학독본1>을 즐겁게 읽기 위해서는 자신의 삶과 연계시키는 것이 필요할 것 같다. 내가 이 책을 읽으면서 생각하게 된 내용을 몇 가지 적어본다.
1. 허수의 의미
자연수와 0은 우리가 일상 생활에서 셀 수 있는 수의 개념이다. 이를 통해 '있음(有)', '없음(無)'을 표현할 수 있게 되지만, 부족함을 표현할 수는 없다. 부족함을 표현하기 위해 음수가 도입되었고, 분수 단위로의 표현(정수가 아닌 유리수)은 일상생활의 대부분을 표현할 수 있게 만들었다. 그렇지만, 삶의 전체를 표현하는데는 한계가 있다.
'유리수의 조밀성'때문이다.
우리의 세계는 '점'만으로 구성된 것이 아니라 '선(線)'으로도 표현된다. 유리수는 직선에서 '점(點)'으로 대칭이 되고, '선'을 표현하는데 '점'은 한계가 있다. 이러한 차원의 극복을 위해 도입이 된 개념이 '무리수'다. 그리고, 이를 통해 1차원 '선'을 온전하게 표현할 수 있게 된다.
그렇다면, 허수는 어떤 의미가 있을까?
사실, 난 '허수(虛數)'에 대해 잘 알지 못한다. 단지, '제곱해서 음수가 되는 수'를 허수라고 의미한다는 것과 허수라는 개념을 통해 '방향'을 표시하고, 새로운 차원의 표현이 가능하다는 것 정도를 조금 이해할 뿐이다. 허수는 물리학에서 어떠한 의미가 있을까? 이 부분에 대해 추가적으로 공부해야겠다.
2. 교환법칙 a+b=b+a
수학 시간에는 당연하게 받아들이고 생각했던 공식이다. 굳이 외울 것도 없는 공식이지만, 교환 법칙을 자세히 들여다 보면 수많은 약속이 숨겨져 있다.
가. 'a'와 'b' 사이 '+'에는 시간적인 개념이 없다. 거의 동시적인 개념이다. 만약' 시간적인 개념이 있다면 '+'되는 동안 'a' 또는 'b'가 소멸해버릴 수 있을 것이고, 더해질 수 없으리라. 또는 금융학적으로 '1년'이라는 시간이 흐른다면 양 식을 같게 해주는 적절한 할인율(r)이 필요할 것이다.
나. 'a'와 'b'에서 둘의 위치는 동등하다.
현대자동차가 기아차를 인수해서 현대자동차 그룹이 되었다고 하자.
현대자동차 + 기아차 = 현대자동차그룹
이러한 내용에 교환법칙이 성립한다면 다음과 같은 내용으로 쓸 수 있을 것이다.
현대자동차+ 기아차 = 기아차 + 현대자동차
그렇지만, 이 식으로는 현대자동차가 기아차를 인수했는지, 기아차가 현대자동차를 인수했는지를 알 수 없다. 다만 둘이 하나가 되었다는 결과만 알 수 있을 뿐이다. 결국, 교환 법칙은 a,b 가 완전히 동일하고 호환가능하다는 전제하에 성립이 되는 법칙이다.(실제 생활에 적용은 지극히 제한된 이상세계(Idea)에서나 가능한 내용이다.)
3. y= ax+b
이 식은 'y'는 'x'에 의해 어떻게 설명되는 것인가를 보여준다. 사회과학에서 사용하는 회귀분석, 상관분석에서 구하는 것은 바로 x와 y가 관계있는 정도인 'a'다. 그리고, 기본적으로 이를 사용해서 modeling(모형구축)을 하게 된다.
자신이 세운 가설에서 수많은 관찰과 실험을 통해 요인들을 변수 또는 상수의 위치에 놓고 가장 적합하다고 생각되는 모형을 바탕으로 자신의 이론을 정립한다. 그 과정에서 새로운 변수가 투입되기도 하고, 탈락하기도 한다.
가장 대표적인 경우가 코페르니쿠스의 '지동설'이다.
코페르니쿠스의 '지동설'은 프톨레마이우스의 '천동설'보다 더 적은 변수(회전원)을 가지고 천체운동을 설명했기 때문에, 보다 더 설득력있는 모형으로 받아들여졌다..
이렇게 보면 y=ax+b 도 쉬운 내용이 아니다.
이번에 수학독본을 읽을 때 이처럼 기본 개념을 가지고 접근을 하니 2가지 장점과 1가지 단점이 드러난다. 2가지 장점 중 하나는 계산오류가 없다는 것이고, 다른 하나는 재밌게 수학에 접근할 수 있다는 것이다. 여기에 따르는 한가지 단점은 진도가 안나간다는 것이다...
비록 진도는 나가지 않지만, 수험생도 아니고 일반인들이 스트레스를 받아가며 문제를 풀 필요는 없지 않은가. 생각보다 수학은 재밌는 친구일 수 있는데, 우리에게는 부담스러운 넘사벽 '영수(英數)'로 남아있는 것은 아닌지 생각해보는 계기가 되었다.
PS. <수학독본2>는 아마도 <파이브 스타 스토리> 다음편이 나올 때쯤 다 읽을 것 같다.