뇌터의 정리에 관해 들어본 적은 있었는데, 사실 아직도 이 부분이 맞는 것인지 혼란스럽던데.
물리학을 고등학교에서 배울 때도 암기만 해서 어려웠고, 싫었었는데.
왜 고등학교 교사 중에서 뉴턴의 3법칙이 어떤 사유로 증명되었던 것인지에 대한 질문에 제대로 답을 해 준 사람이 없었을까.

뇌터가 얼마나 뛰어난 수학자였는지 알고 싶다면 다음 이야기에 주목하자. 뇌터는 수술 합병증으로 53세의 나이에 요절했다. 그 후 알버트 아인슈타인Albert Einstein은 <뉴욕타임스>에 ‘에밀뇌터 양은 여성 고등교육이 시작된 이래 지금까지 배출된 가장 걸출하고 창조적인 수학 천재‘라고 공표했다. 이 말은 정말 모욕적인 칭찬이다. 뇌터는 세상을 뜰 당시 세계에서 가장 위대한 대수학자가 분명했다. 남자든 여자든 상관없이 말이다. 게다가 아인슈타인도 그 사실을 인정하고 있었다. 아인슈타인은 일반상대성이론(훗날 뇌터가 바로잡도록 도와줬다)의 한 부분에 막혔을때 힐베르트에게 편지를 보내 이렇게 부탁했다. ‘뇌터 양에게이 부분을 설명해 달라고 전해주게.  - P173


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 

우리는 남쪽으로 75마일을 항해했으므로 이상적인 항로에서 2방위 떨어진 곳에 있다. 따라서 마르텔리오의 법칙을 이용해 계산하면 75/100x38마일, 즉, 28.5마일 벗어났음을 알 수 있다. 5 그래서 원래의 이상 항로에서 4방위 더 나아가 (원래 항로로)돌아오는 항해를 하게 될 것이다. 그렇다면 얼마나 항해해야 할까? 정답은 28.5: 10×14마일, 즉 40마일이다. 이렇게 하면 원래 의도한 이상 항로로 돌아와 헤라클리온으로 향하는 남은 거리를 항해할 수 있다. - P90

복식부기를 가장 먼저 사용한 이들은 아마 한국 상인일 것이다. 대한천일은행(현 우리은행_옮긴이)이 보관하고 있는 자료에따르면 한국 상인은 중국 및 아라비아와 무역을 했던 11세기에송도사개부치법, 즉 ‘사개개성 부기‘라는 방법을 사용했다. 이기서 사는 주는 사람, 받는 사람, 주는 것 또는 주는 돈, 받는것 또는 받는 돈을 말한다. 따라서 모든 거래는 복식부기여야했다. - P55


댓글(0) 먼댓글(0) 좋아요(1)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 

새로운 형태는 올록볼록하고 이상해 보이는데, 윗변과 밑변은 부채꼴 모양들이 연결돼 있는 것처럼 생겼다. 이 형태는 직사각형과는거리가 멀기 때문에 그 넓이를 구하기가 쉽지 않다. 우리는 앞으로 나아가는 게 아니라, 오히려 뒤로 물러나는 것처럼 보인다. 하지만 모든드라마가 그렇듯이, 주인공은 승리를 거두기 전에 곤경에 빠질 필요가있다. 극적인 긴장이 누적되고 있다. - P45


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 

세상사는 비슷한 삶.

1년 뒤, 나는 인터넷에서 점점 더 많은 시간을 보내고 있었다.
석사 논문을 써야 할 때 필연적으로 발생하는 일탈 행위였다. - P362


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 

이것은 실제로 일어난 진실이다. 나는 한때 군인이었다. 거기에는 많은 시체들이 있었다. 진짜 얼굴을 지닌 진짜 시체들이 하지만 그때 나는 어렸고 쳐다보기가 두려웠다. 그리고 20년이 지난 지금 내게는 정체불명의 죄책감과슬픔만이 남아 있다.
이것은 이야기적 진실이다. 죽은 사내는 가냘픈 체구의 스무 살쯤 돼 보이는 젊은이였다. 그는 미케 마을 근처의 붉은 진흙길 한가운데 누워 있었다.
턱이 목구멍 안에 처박혀 있었다. 한쪽 눈은 감겨 있었고 다른 쪽 눈에는 별모양의 구멍이 뚫려 있었다. 내가 그를 죽였다. - P78


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo