-
-
숨마쿰라우데 스타트업 공통수학 2 (2026년용) - 2022 개정 교육과정, 반복 수학 문제집 ㅣ 고등 숨마 수학 (2026년)
김승훈 외 지음 / 이룸이앤비 / 2024년 12월
평점 :
이제 2학기 기말고사가 얼마 남지 않았는데요.
고등수학문제집으로 개념을 쉽게 학습할 수 있는 난이도 쉬운
문제집을 골라봤어요.

2022개정교육과정으로 고등수학을 예습하거나
고등수학 개념이 잘 안잡히는 친구들을 위해
쉽개 개념을 익히고 유형을 풀 수 있는 수학문제집입니다.
공통수학2에서는 함수 부분을 어려워하는 친구들이 많은데요.
함수개념을 쉽게 잡을 수 있는 스타트업 공통수학2로
꼼꼼하게 함수의 개념을 잡아봤어요.

스스로 공부할 계획을 세우고 문제집의 개념을
잘 따라가다보면 수능수학도 쉽게 정복해나갈 수 있을 거에요.
스타트업 공통수학2란?
스타트업은 이름처럼 '시작'을 도와주는 개념서예요.
한 개념씩 차근차근 설명하고, 바로바로 문제를 풀어보면서 개념을
완전히 내 것으로 만들 수 있는 구성이 특징이에요.
특히 공통수학2의 핵심인 함수와 그래프 파트를
정말 쉽고 체계적으로 설명해주더라고요!

스타트업의 장점
✅ 하루 4쪽, 50일 완성 프로그램
✅ 개념을 한입 크기로 나누어 부담 없이 학습
✅ 개념 설명 → 기본 문제 → 유형 문제 3단계 구성
✅ 스스로 공부하기 좋은 친절한 해설
✅ QR코드로 개념 동영상 강의 무료 제공
공통수학2 함수, 뭘 배우나요?
공통수학2에서는 중학교 때 배운 함수 개념을 확장하고,
고등수학의 기초가 되는 중요한 내용들을 다뤄요.
공통수학2 함수 단원 구성
1. 함수
함수의 뜻과 그래프
합성함수
역함수
2. 유리함수와 무리함수
유리함수
무리함수
이 네 가지 대단원이 공통수학2의 핵심이에요.
각각의 개념이 연결되어 있어서 순서대로 탄탄하게 공부하는 게 정말 중요하답니다!
Day 1-15: 함수의 기초 개념 잡기
함수란 무엇인가?
중학교 때는 "x값 하나에 y값 하나가 대응된다"고만 배웠는데,
고등학교에서는 훨씬 더 정확하고 엄밀하게 배워요.

함수의 정의
두 집합 X, Y에 대하여 X의 각 원소에 Y의 원소가 하나씩 대응할 때, 이 대응 관계 f를 X에서 Y로의 함수라고 한다.
처음에는 이 정의가 어렵게 느껴졌는데, 이렇게 생각해보세요.
"함수는 '입력→출력' 기계라고 생각하면 돼. x라는 숫자를 넣으면 f(x)라는 값이 정확히 하나 나와!"
학습 포인트
정의역(X): 입력값들의 집합
공역(Y): 출력값이 속할 수 있는 집합
치역: 실제로 나온 출력값들의 집합
함숫값: 특정 x값을 넣었을 때 나오는 y값
일대일대응, 일대일함수, 항등함수
스타트업에서는 이런 개념들을 그림과 함께 정말 직관적으로 설명해줘요.
일대일대응
정의역의 서로 다른 두 원소에 치역의 서로 다른 원소가 대응
정의역의 모든 원소가 사용되고, 치역의 모든 원소도 사용됨
쉽게 말하면 "완벽한 짝짓기"!

일대일함수
서로 다른 x값에 서로 다른 y값이 대응
하지만 치역의 모든 원소가 사용되지 않을 수도 있어요
항등함수
f(x) = x
들어온 값 그대로 내보내는 함수
가장 단순하지만 중요한 함수!
나의 학습 루틴 (1주차)
Day 1-2: 함수의 정의와 함숫값
아침: 개념 읽기 (20분)
저녁: 기본 문제 풀기 (30분)
자기 전: 개념 복습 (10분)
Day 3-4: 일대일대응과 일대일함수
개념 QR코드 동영상 시청 (15분)
문제 풀이 (40분)
틀린 문제 다시 풀기 (20분)

Day 5-7: 상수함수와 항등함수
개념 정리 (15분)
문제 풀이 및 복습 (45분)
주말에 1주차 전체 복습
처음에는 함수의 정의가 낯설어서 어려웠는데,
스타트업의 단계별 문제를 풀다 보니 자연스럽게 이해가 되더라고요!
🔄 Day 16-30: 합성함수 정복하기
합성함수, 이게 뭐야?
합성함수는 처음 들어보는 개념이라 가장 걱정했던 부분이에요.
근데 스타트업에서 "함수 두 개를 연결해서 사용하는 거야"라고 설명하니까 이해가 쉬웠어요!
합성함수의 정의
함수 f: X→Y, g: Y→Z가 있을 때, x∈X에 대하여 g(f(x))로 나타내는 함수를
g와 f의 합성함수라고 하고, 기호로 g∘f와 같이 나타낸다.
쉽게 이해하기
먼저 f에 x를 넣어요 → f(x)가 나와요
그 결과를 g에 넣어요 → g(f(x))가 나와요
이걸 한 번에 표현한 게 (g∘f)(x)!
합성함수 계산 연습
예제 1
f(x) = 2x + 1, g(x) = x² 일 때, (g∘f)(x) 구하기
풀이
f(x) = 2x + 1
g(f(x)) = (2x + 1)²
= 4x² + 4x + 1
처음에는 순서가 헷갈렸는데, 스타트업에서 "안쪽부터 계산한다!"는 팁을 주더라고요.
g∘f라고 쓰여있지만, 실제로는 f부터 계산하는 게 핵심!
합성함수의 성질
스타트업에서 강조하는 중요한 성질들:
결합법칙 성립: (h∘g)∘f = h∘(g∘f)
교환법칙 성립 안 함: g∘f ≠ f∘g (일반적으로)
항등함수와의 합성: f∘I = I∘f = f
특히 교환법칙이 성립하지 않는다는 게 중요해요! 시험에 자주 나오는 부분이라고
강조되어있더라구요.
합성함수는 처음에 개념이 안잡혔는데요.
하지만 스타트업의 단계별 문제가 정말 잘 구성되어 있어서,
쉬운 문제부터 차근차근 풀다 보니 어느새 어려운 문제도 풀 수 있게 되더라고요!
스타트업으로 공부하면서 느낀 점
장점
1. 체계적인 구성
하루 4쪽씩, 50일 완성이라는 명확한 목표가 있어서 계획 세우기가 정말 쉬웠어요.
"오늘은 어디까지 공부하지?"라는 고민이 없으니까 공부에만 집중할 수 있었어요!
2. 한입 크기 개념
하나의 큰 개념을 작은 조각으로 나눠서 설명해줘요.
덕분에 "함수"라는 큰 산을 오르는 게 아니라, 작은 언덕을 하나씩 넘는 느낌이었어요.
3. 3단계 학습 시스템
개념 설명 → 기본 문제 → 유형 문제 순서로 구성되어 있어서,
자연스럽게 개념이 내 것이 되더라고요. 특히 기본 문제가 정말 쉬워서 자신감을 가질 수 있었어요!
4. 친절한 해설
해설이 정말 자세해요! "왜 이렇게 풀까?"까지 설명해주니까 혼자 공부하기 딱 좋았어요.
학원 안 다니는 학생들에게 권합니다.
고등수학 난이도 비교를 해보면 난이도 쉬운 수학문제집에 들지만
개념을 그만큼 잘 학습할 수 있는 공통수학문제집이라서
수학 개념을 어려워하는 친구들이 학습하면 좋을 듯 합니다.
수학을 미리 예습하기 좋은 예비고1 수학문제집으로도
괜찮은 구성이에요.