친절한 딥러닝 수학 - 인공 신경망 이해를 위한 기초 수학
다테이시 겐고 지음, 김형민 옮김 / 한빛미디어 / 2021년 3월
평점 :
장바구니담기


<친절한 딥러닝 수학>, 다테이시 겐고 지음, 김형민 옮김, 한빛미디어, 2021


머신러닝, 딥러닝 등 AI 기술의 발달은 우리의 업무 환경을 빠르게 바꾸고 있다. 아직 체감되지 않는 부분도 있지만, 오늘도 누군가는 사람이 하던 일을 인공지능으로 대체하고자 노력하고 있다. 지금은 단순 반복 작업을 줄이는 정도로 활용하고 있지만, 방대한 정보를 바탕으로 미래를 예측하는 인간으로서는 불가능한 일을 인공지능이 대체할 수 있지 않을까 상상하곤 한다.


가령 인공지능이 한 기업의 기후변화 영향을 예측해 주요 경영의사결정에 근거를 제공하거나, 소비자 트렌드 변화를 감지해 제품 출시와 마케팅 전략을 수립할 수 있다든가. 인공지능에 대한 이해가 깊지 않아 너무 초보적인 상상에 머무는 것 아닌가 싶긴하다.


딥러닝의 원리를 이해하면 실현 가능한 상상과 아직 실현하기 어려운 상상을 구분할 수 있지 않을까? 수학이라면 일찌감치 내려놓은 수포자로서 과연 이해할 수 있을까 싶었지만, <친절한 딥러닝 수학>을 통해 기본 원리만이라도 이해할 수 있길 기대하며 도전했다.


결론적으로는 절반쯤 이해했다. 신경망의 개념과 머신러닝 알고리즘과의 차이점을 이해했고, 딥러닝과 관련된 각종 용어들을 반복해서 접하다 보니 낯설지 않게 되었다. ‘회귀’, 분류’, ‘가중치’, ‘편향등은 일상에서도 사용하는 단어이지만 전문 용어로서는 전혀 다른 개념이라 많이 헷갈렸지만, 예시와 함께 설명되어 있어 비교적 쉽게 이해할 수 있었다.


회귀는 연속값() 분류는 연속값이 아니라 대상을 성격에 따라 그룹화(19)


가중치나 편향을 변경하는 조작은 실제로는 그림 속에서 직선을 변경하는 작업과 같은 거야. 그러니까 처음부터 직선으로 분류할 수 없는 문제는 아무리 가중치나 편향을 조절해도 결국 분류할 수 없어() 직선으로 분류할 수 있는 문제는 선형분리 가능, 직선으로 분류할 수 없는 문제는 선형분리 불가능(61)


입력과 출력만 있는 퍼셉트론을 단층 퍼셉트론() 퍼셉트론의 유닛을 겹쳐서 층을 늘린 것을() 다층 퍼셉트론이라고 해. () 다층 퍼셉트론이 바로 신경망이야(63~65)


입력값에서 출력값까지 순서대로 계산하는 순전파는 이해했으나, 역전파와 합성곱 신경망에 이르러서는 개념정도 이해하는 데 그쳤다. 한 번 읽고 이해할 수 있다 생각하지 않았으니, 재독, 삼독하면 이해의 폭이 넓어지지 않을까 싶다.


신경망의 개념과 원리를 몰라도 딥러닝, 머신러닝을 구현하는 데 아무 문제가 없는데 쓸데 없는 시간을 낭비한다 생각할 수도 있다. <친절한 딥러닝 수학>의 저자도 신경망과 관련된 프레임워크나 라이브러리 데이터셋 등이 풍부해져서 간단하게 경함할 수 있어 신경망의 개념과 원리를 몰라도 구현할 수 있다고 이야기한 한다. 하지만 신경망의 개념과 기본 원리를 알면 응용하고 활용하기 용이하다는 점도 함께 강조한다.


신경망의 개념과 원리, 적용된 수식에 대해 알고 싶다면 <친절한 딥러닝 수학>은 대체로 기대를 충족할 것이라 믿는다.


* 해당 도서는 출판사로부터 무상으로 제공받았으며, 제 주관에 따라 솔직하게 작성했습니다.



댓글(0) 먼댓글(0) 좋아요(1)
좋아요
북마크하기찜하기 thankstoThanksTo