-
-
실무로 통하는 ML 문제 해결 with 파이썬 - 전처리부터 딥러닝까지, 216개 실용 예제로 익히는 문제 해결 기법
카일 갤러틴.크리스 알본 지음, 박해선 옮김 / 한빛미디어 / 2024년 4월
평점 :

코딩 실력을 높이는 방법은 여러 가지가 있는데, 역시 최고의 방법은 그동안 배운 것을 전체적으로 써먹을 수 있는 프로그램을 짜 보는 것이다. 그런데 초보라면, 곳곳이 지뢰밭인 느낌을 받을 것이다. 한번 막히며, 며칠을 끙끙거려도 쉽게 해결되지 않는다. 이때 주변에 프로그램을 잘 하는 사람이 있다면, 막히는 부분 살짝만 힌트를 줘도 엄청 쉽게 난관을 극복할 수 있게 된다.
이는 초보만 해당되는 얘기는 아니다. 중급이든 고급 개발자든 막혔을 때, 그 파트 전문가가 살짝만 건드려줘도 문제 해결이 참 쉬워진다. 이런 원 포인트 레슨의 위력은 대단하다 느낀다.
하지만 보다 나은 멘토나 전문가의 도움을 얻기는 쉽지 않다. 그래서 차선책으로 찾는 게 책이다. 카일 갤러틴, 크리스 알본의 '실무로 통하는 ML 문제 해결'이 바로 그런 책이다. 머신러닝, 딥러닝 같은 인공지능 이론을 어느 정도 익히고, 이것을 써 먹을 때, 막히거나, 실제 어떻게 구현해야 할지 잘 모르겠을 때, 써먹으면 좋은 책이다.

골라 먹는 재미가 있다는 아이스크림처럼 '실무로 통하는 ML 문제 해결'은 골라 써먹는 재미가 있는 216개의 실용 예제를 담고 있다. 파이썬과 파이토치, OpenCV, 넘파이, 각종 라이브러리를 사용하여, 벡터, 행렬, 배열, 데이터 적재, 데이터 랭글링, 수치형 데이터, 범주형 데이터, 텍스트, 날짜와 시간, 이미지 다루기, 특성 추출을 사용한 차원 축소, 특성 선택을 사용한 차원 축소, 모델 평가, 모델 선택, 선형 회귀, 신경망 등등 23개의 챕터로 분류한 머신러닝 관련 주제를 담고 있다.

구성은 크게 과제, 해결, 설명, 3단계 형태로 되어 있다. 과제가 제시되면, 그것을 해결하는 샘플 코드가 나오고, 이에 대한 설명이 나오는 식이다. 과제는 '벡터를 만들어야 합니다.' 같은 쉬운 것부터 시작해서, '훈련된 파이토치 모델을 실시간 예측을 위해 서빙하고 싶습니다.' 같이 보다 세밀한 주문이 들어간 것들이 나오므로, 자신이 구현하려는 것과 비슷한 과제를 찾아 골라 써먹으면 된다.
그래서 그런지 책을 보다 보면, 전에 많이 접했던 'XX 언어 100제' 그런 책들 느낌도 든다. 그도 그럴 것이 '실무로 통하는 ML 문제 해결'의 원제는 'Machine Learning with Python Cookbook'이다.
쿡북이라는 이름처럼 필요한 레시피 과제만 쏙쏙 골라 써먹기 좋다. 아울러 이번 책은 최신 정보를 담고 있는 새로운 2판이라, 최신 정보와 함께 보다 잘 다듬어 나왔다.

게다가 이 책은 그저 번역만 되어 나온 것이 아니라, 박해선 역자가 '덧붙임'이라는 코너를 추가해서, 여기에 관련 수학 공식부터, 라이브러리 설명, 보충 설명, 또 다른 응용 코드, 테스트 코드 같은 것을 곳곳에 담아 놨다. 몇 줄 적은 주석 수준이 아니다. 긴 건은 두 쪽에 걸쳐 나온다. 마치 원래 시킨 식사에 맛난 반찬이 추가되어, 보다 푸짐한 밥상을 독자가 받을 수 있게 했다. 그만큼 책 내용을 보다 쉽고 폭 넓게 이해할 수 있게 해준다. 옮긴이의 노력과 정성에 고마움을 표하지 않을 수 없다.

'실무로 통하는 ML 문제 해결'은 초보를 위한 책이 아니다. 인공지능, 머신러닝, 딥러닝에 대한 사전 학습이 어느 정도 되어 있는 사람에게 도움이 되는 책이다. 그렇다고 너무 어려운 책도 아니다. 인공지능 입문 책에 많이 봤을 부분도 많이 나온다. 다만 여기서는 코딩 중심으로 코딩에 꼭 필요한 것들만 주로 담고 있다. 덕분에 응용 위주로 인공지능 지식을 빠르게 정리할 수 있다. 만일 이론 부분이 전혀 생각이 나지 않는다면, '참고' 코너에서 안내하고 있는 주소로 들어가 다시 한번 점검하는 것도 좋을 것이다.

내 경험상 코딩 내공은 책만 많이 본다고 쌓아지는 거 같진 않다. 이론 공부와 함께 다양한 프로그래밍 경험은 필수다. 그리고 기초를 튼튼히 해야 한다. 배열이나 날짜, CSV, JSON 다루기 같이 쉬운 것부터 차근차근 정복하는 것이 좋다. 코딩할 때마다 쉬운 걸 매번 반복해서 어떻게 하나 찾아야 한다면, 재미와 능률도 떨어진다. 물론 '실무로 통하는 ML 문제 해결'이 잘 정리하고 있지만, 자주 쓰고 쉬운 것들은 완벽히 내 것으로 만들어 둘 필요가 있다. 어쨌든 이번에 인공지능 코딩에 많은 도움이 될 골라 써먹을 수 있는 '실무로 통하는 ML 문제 해결'이란 좋은 책을 만나서 기쁘다.