한 컷 쏙 수학사 - 한 컷마다 역사가 바뀐다 한 컷 쏙 시리즈
윤상석 지음, 박정섭 그림, 이창희 감수 / 풀빛 / 2024년 7월
평점 :
장바구니담기


아이가 수학이 왜 생겨서 자기를 힘들게하냐~ 수학 너무싫다~

연산싫다 분수싫다를 반복하다보니

수학에서 재밌는 요소를 찾아주고 싶어서 선택하게 된 책이예요

수에 대한 기원부터 우리 일상에서 당연히 쓰이게된 기준 같은것들이 어떻게

어디에서 시작되었는지 쉽게 알려주다보니 수학적 흥미가 생기게 만드는 책이더라구요.

숫자가 없어도 되었던 시절 돌과 나무가지로 세다가

줄을 그어 표시하기도 하고, 손가락으로 표시하기도 하고

십진법을 사용하게 된 계기가 된다는 것

한시간이 60분이라는 60진법의 시작이 바빌로니아였는데

1부터 59까지 수를 만들었다는것도 신기하지만 60진법이 불편하지 않았을까?

하는 생각이 들기도 하고 한시간이 60분이라는건 10진법을 따르지 않고

60진법으로 한데는 무슨 이유가 있었을까? 하는 호기심이 든다고 하네요.

보면 볼수록 수에 대한 것들을 자세하게 알수있기도하고

몰랐던 지식을 담을 수 있기도 한데 그시대에 수를 나타낸것도

다른 방법으로 표기한것도 신기해요.

모든분자를 1로 한다는 단위분수의 기원일까요?ㅎㅎ 이집트의 분수가

신기하기도하고, 범람하는 지형으로 인해 기하학이 발달했다는등

배경을 알수있게 되는것도 유익한것같아요.

이집트, 중국,인도, 그리스의 숫자 사용의 기록 어떤방법으로 표기했는지

각지역마다 다르긴해도 10진법을 쓰는것이 대부분이였네요.

멀리 떨어졌음에도 비슷한시기에 비슷한 행동을 한다는것이

신기한것 같아요.

수가 삼각수, 사각수라고 있는것도 처음봤는데 신기했던건

아르키메데스가 그시절에 원주율을 알아냈다는것, 그리고 그오차가 약0.0002라니

아무리봐도 대단하네요. 어떻게 그걸 계산했을까요?

내접하는 다각형, 외접하는 정다각형으로 생각했다니 역시

수학자들은 뭔가 다른듯해요.



수학기호가 빨리쓰다가 만들어졌다는것도

루트기호가 r을 변형해서 만든것이라는것도

새롭게 알게되는것이 은근 많더라구요.

초등학생부터 봐도 좋을것 같아요.

그림도 재밌고 수학에 대한 이모저모를 알수있게되어

어른들도 보기에 재미있는 책이네요.

[출판사로부터 도서 협찬을 받았고 본인의 주관적인 견해에 의하여 작성함]



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo