-
-
AutoML 인 액션 - AutoKeras 창시자가 안내하는, AutoKeras와 KerasTuner로 머신러닝 파이프라인 최적화하기
칭취안 송.하이펑 진.시아 후 지음, 박찬성 옮김 / 한빛미디어 / 2023년 10월
평점 :
도서 개요: "AutoML 인 액션: AutoKeras 창시자가 안내하는, AutoKeras와 KerasTuner로 머신러닝 파이프라인 최적화하기"
이 책은 다음과 같은 독자를 위해 작성되었습니다:
머신러닝 엔지니어: AutoML 개념을 탄탄하게 이해하고 실무 응용과 고급 주제에 대해 알고 싶은 분들에게 적합합니다.
AutoML 도구에 관심 있는 프로젝트 관리자와 개발자: AutoKeras와 KerasTuner 같은 도구를 활용하여 프로젝트 효율성을 높이고 싶은 분들에게 이상적입니다.
데이터 과학자 및 분석가: 머신러닝 모델의 개발과 최적화 방법을 찾고 있는 전문가들에게 맞춤화되어 있습니다.
학계 연구자: 최신 AutoML 연구와 기술에 관심이 있고, AutoML을 다른 관점에서 접근하고 싶은 분들에게 완벽합니다.
이 책의 최대 활용 방법:
이 책은 체계적인 학습 경험을 제공하며, 독자들이 기본적인 AutoML 개념에서 고급 주제까지 단계별로 진행할 수 있습니다. 내용을 순차적으로 따라가면서, 실제 예시와 연습을 통해 AutoML에 대한 전반적인 지식과 실용적인 능력을 향상시킬 수 있습니다.
[PART 1: AutoML 기본]
머신러닝과 AutoML 이해하기: AutoML의 핵심 철학과 장점을 살펴보세요. 만약 AutoML 개념에 익숙하지 않다면 이 부분부터 시작하는 것이 좋습니다.
머신러닝 프로젝트의 흐름 이해하기: 머신러닝 프로젝트를 계획하고 구성할 때 도움이 되는 전반적인 흐름을 파악하세요.
딥러닝 시작하기: 딥러닝에 익숙하지 않은 독자에게 특히 유용하며, 기본 모델로 실제 문제를 해결하는 방법을 학습합니다.
[PART 2: 실전 AutoML]
실제 머신러닝 문제 해결하기: AutoKeras를 활용한 실제 문제 해결 방법을 배웁니다. 실무에서 자주 마주치는 문제를 어떻게 해결하는지 경험해보세요.
고급 파이프라인 구성하기: 파이프라인의 세부 조정 및 최적화 방법을 배웁니다. 심화 단계의 AutoML 활용법을 익히고자 하는 독자에게 추천합니다.
사용자 정의 탐색 활용하기: 사용자 정의 탐색 기법을 통해 더욱 세밀한 모델 튜닝 방법을 배웁니다.
[PART 3: AutoML의 고급 주제]
다양한 검색 기법 탐구하기: 다양한 검색 기법을 통해 최적의 모델을 찾는 전략을 배웁니다.
AutoML의 확장성 활용하기: 대규모 데이터셋 처리 및 병렬 처리 방법 등 AutoML의 확장성을 최대한 활용하는 방법을 배웁니다.
전체 내용 복습 및 미래 전망 알아보기: 지금까지 학습한 내용을 복습하고, AutoML의 미래 발전 방향에 대해 알아봅니다.
[부록]
실습 환경 구축하기: 부록 A에서는 코드 실습을 위한 환경 설정 방법을 소개합니다. 실제로 코드를 실행하며 학습하고자 하는 독자에게 유용합니다.
실제 예제로 실력 키우기: 부록 B에서는 다양한 데이터 유형에 대한 분류 예제를 통해 실제로 학습한 내용을 적용해보는 기회를 얻을 수 있습니다.
AutoKeras 창시자의 실무 경험을 담은 AutoML 실전 가이드
이 책은 AutoML의 기본 개념부터 심화 내용과 실무 활용까지 전 과정을 포괄적으로 다루는 실전서입니다. AutoML 파이프라인의 확장성 개선부터 검색 알고리즘, 원샷 튜닝 기법까지 최신 AutoML 기술 동향을 한 권에 모두 담아냈습니다. 더불어 AutoKeras 창시자가 직접 알려주는 방법을 통해 AutoKeras와 KerasTuner를 활용하여 ML 파이프라인을 심도 있게 배우게 됩니다. 또한 검색 기법, 분류, 회귀, 데이터 증강 등 다양한 예제를 통해 AutoML 파이프라인을 생성하고, 머신러닝 문제를 해결하며 파이프라인을 개선하는 능력을 함양할 수 있습니다. 이 책을 통해 AutoML에 대한 포괄적인 이해를 기반으로 실무에 적용할 수 있는 실용적인 지식까지 얻어보세요.
"한빛미디어 리뷰어 활동을 위해서 책을 제공받아 작성된 서평입니다."