제대로 배우는 수학적 최적화 - 최적화 모델링부터 알고리즘까지
우메타니 슌지 지음, 김모세 옮김 / 한빛미디어 / 2021년 9월
평점 :
장바구니담기


 

1장_수학적 최적화 입문


수학적 최적화는 주어진 제약조건하에서 목적 함숫값을 최소(또는 최대)로 하는 설루션을 구하는 최적화 문제를 말하며, 현실 사회의 의사결정이나 문제를 해결하는 수단입니다. 1장에서는 예시와 함께 수학적 최적화의 개요에 대해 설명합니다.


2장_선형 계획


선형 계획 문제는 가장 기본적인 최적화 문제로, 대규모의 문제 사례를 현실적인 계산 수단으로 푸는 효과적인 알고리즘이 개발되어 있습니다. 선형 계획 문제의 정식화, 선형 계획 문제의 대표적인 알고리즘인 단체법에 대해 알아보고, 수학적 최적화에서 가장 중요한 개념인 쌍대 문제와 완화 문제를 설명합니다.


3장_비선형 계획


비선형 계획 문제는 적용 범위가 매우 넓기 때문에, 다채로운 비선형 계획 문제를 효율적으로 푸는 범용적인 알고리즘 개발은 어렵습니다. 비선형 계획 문제의 정식화, 효율적으로 풀 수 있는 비선형 계획 문제의 특징을 설명한 뒤 제약이 없는 최적화 문제와 제약이 있는 최적화 문제의 대표적인 알고리즘을 설명합니다.


4장_정수 계획과 조합 최적화 문제


선형 계획 문제에서 변수가 정숫값만 갖는 정수 계획 문제는 산업이나 학술 등 폭넓은 분야에서 현실 문제를 정식화할 수 있는 범용적인 최적화 문제 중 하나입니다. 정수 계획 문제의 정식화, 조합 최적화 문제의 어려움을 평가하는 계산 복잡성 이론의 기본적인 사고방식에 대해 알아봅니다. 또한 몇 가지 특수한 정수 계획 문제의 효율적인 알고리즘과 정수 계획 문제의 대표적인 알고리즘인 분기 한정법과 절제 평면법을 설명한 뒤, 임의의 문제를 예로 들어 근사 성능을 보증하며 실행 가능한 설루션을 구하는 근사 알고리즘과 많은 문제 사례에 대해 고품질의 실행 가능한 설루션을 구할 수 있는 국소 탐색 알고리즘 및 메타 휴리스틱에 대해 설명합니다. 


[대상 독자]

- 최적화 이론에 관심 있는 학생과 연구원 및 수학적 최적화와 관련 업무에 종사하는 실무자

- 수학 관련 전공자가 아니더라도 인공지능 분야나 기타 여러 산업 분야에서 최적화 알고리즘 적용에 대한 공부를 하고 싶은 독자


[서평]

우메타니 슌지의 “しっかり学ぶ数理最適化 モデルからアルゴリズムまで (KS情報科学専門書)”작품을 김모세님 께서 번역한 책(제대로 배우는 수학적 최적화)이다. 


단체법(심플렉스 법)을 이용한 해법에 대해서 구체적 예를 제시하고 일반적인 솔루션을 위한 방법은 쉽고 좋습니다. 상호 문제, 완화 문제에 대해서 라그랑주 완화 문제 진행도 자연스럽습니다. 


별 1개를 뺀 이유 대해서 말하겠습니다. “기본적으로는 좋은 책이라는 전제”입니다.


이책에서는 각 이슈가 예를들어 "이를 XXX이라 한다"라고 말했을 때의 참조 대상이 구체적인 예가 되는 것이 많이 있습니다.(예를 들면 p48의 "여유 변수"는 구체적인 예의 x3, x4, x5를 가리키고 있습니다. 이 직후의 기본 변수 및 해당 변수에 대해서도 정의와 의미 설명이 부족합니다.)


물론 분위기는 알고, 유추할 수도 있습니다. 그러나 수학 서적으로, 이런 용어의 도입과 사용은 이해가 더 희미하게 되므로 어렵다라고 생각합니다.


하지만, 적어도 수학적 최적화만으로도 책을 살 의미가 있다고 생각합니다.

알고리즘과 데이터 구조, 미적분, 선형대수의 선행 지식이 어느 정도 있어야 내용을 이해 할수 있습니다. 이 책에서 알고리즘과 수학적 최적화 모델 및 구현 문제에 대해서 어떻게 해결 해야 하는지 배울수 있습니다. 책의 내용을 완전히 이해하고 연습문제를 풀수 있는 수준까지 된다면 현업에서 해결 해야 할 수학적 모델 최적화를 적용하는데 크게 어려움이 없을것이라 생각합니다.


 "한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo