-
-
밑바닥부터 시작하는 딥러닝 4 -
파이썬으로 직접 구현하며 배우는 강화 학습 알고리즘 ㅣ 밑바닥부터 시작하는 딥러닝 4
사이토 고키 지음, 개앞맵시 옮김 / 한빛미디어 / 2024년 1월
평점 :
아직도 이쪽으로 파고 또 파야 한다는 강박과 미련을 버리지 못했나보다.
마음으로는 LLM 쪽으로 중심을 옮겨보고 싶었다. 그런데 그게 마음대로 되지는 않는구나.
4편은 강화학습에 관한 책이다. 이 책에 관심을 갖는 사람들은 당연히 머신러닝, 딥러닝에 대한 기본적인 이해 이상의 식견이 있는 사람들일 것이다. 나도 강의를 하면서 강화학습에 대해서 살짝 언급을 하기만 하지 구체적으로 어떻게 흘러가는지는 잘 모르고, 또 접할 기회도 별로 없었기에 강화학습 스터디모임을 만들어 다들 해보는 미로찾기 소스코드 분석해 보다가 "이게 왜 되지?" 하는 식의 현타가 오기도 했었다^^.
이 책은 "밑바닥부터 만들어 가면서 강화학습의 핵심 이론을 익히고, 문제를 풀고, 심층 강화학습까지 한 권으로 공부할 수 있는 책"이라고 소개하고 있다. 목차를 보아도 뭔가 알아야 할 것들을 차례차례, 차곡차곡 알려주는 느낌이다. 그런데 끝까지 다 보지는 못하고 리뷰를 써본다.........
책의 내용이 쉬운 내용은 아닌데 앞장부터 한 장씩 읽어가다 보면 묘하게 설득이 된다. 용어 설명, 원리를 쉬운 예를 들어서 설명한다. 그러다가 휘발성 메모리를 가진 내가 "앞에서 무슨 얘기 했더라" 하는 생각이 들 때쯤 코드로 구현을 통해 일단 다지기를 시연한다. 한 단원을 마무리하기 전에는 한 페이지 정도를 할애해서 '정리'를 해준다. 이런 식으로 한 챕터씩 읽어 나가다 보면 적어도 한 가지 개념에 대해서는 확실하게 알고 넘어갈 수 있는 구조로 되어 있다. 강화학습이 궁금해서 몇 가지 책을 뒤적여(만) 본 내가 느끼기엔 설명이 비교적 자세하고 친절한 책에 속한다.
그렇다고 해서 쉽다는 얘기는 아니다. 수식이 계속 나오기 때문에 우선은 수식에 대한 거부감을 없애고 나서 읽어야 지루하지 않게 넘어갈 수 있다.
10장 4절에서는 바둑, 장기와 같은 보드계임, 로봇제어, NAS(Neural Architecture Search, 최적의 아키텍처를 컴퓨터가 자동으로 설계하는 연구) 등의 사례들도 소개하고 있는데 조금 더 자세하면 좋겠지만^^ 이것들만 읽어봐도 재미있다. 특히 자율주행은 우리 생활과 밀접하면서도 빠르게 실현될 분야일 것이다.