
지은이 이광연 분야 청소년, 교양, 수학 판형 152×225
페이지 384쪽 가격 14,500 발행일 2014년 8월 5일
=목차=
들어가며
Chapter 1 수학은 모든 분야에 숨어 있다
수학, 세상을 합리적으로 보는 창 | 수학은 순서와 중심을 알면 더 쉬워진다 | 실생활에서 옳고 그름을 증명하는 수학 | 수학은 부피를 줄여야 살아남는다 | 만물의 근원은 바로 ‘수’ | 수학은 모든 분야에서 융합과 통섭을 반복한다
Chapter 2 수학과 음악, 환상의 조화를 이루다
음악에서 ‘조화’를 찾은 피타고라스 | 우주의 원리를 음악과 수학의 언어로 바꾸다: 음악의 법칙 | 수학으로 아름다운 음악을 만들다: 피보나치수열과 황금비 | 잉여계로 피아노 건반의 음계를 나타내다: 음계와 잉여계 | 환상의 화음을 이루는 톤네츠: 잉여계와 톤네츠
Chapter 3 수학을 알면 경제가 보인다
파동원리로 주가를 예측하다: 피보나치수열 | 블랙숄즈 방정식, 금융공학의 꽃인가?: 확률편미분방정식 | 죄수의 딜레마로 수학을 배운다: 게임 이론 | 소득은 균등하게 분배되고 있는가?: 로렌츠 곡선과 지니계수 | 섬의 넓이는 어떻게 구할까?: 구분구적법과 정적분 | 맬서스의 인구론을 수학적으로 분석하다: 자연대수와 로지스틱 모델
Chapter 4 영화 속에서 빛나는 수학적 아이디어
생사를 가르는 <설국열차> 속 뉴턴의 냉각법칙: 지수함수 | 윌포드가 열차 속 개체수를 유지하는 방법: 통계적 추정 | 영화 <블라인드>의 주인공이 점자를 읽는 원리: 이산수학 | 형사가 범인을 밝혀내는 방법: 추론과 논리 | <인셉션>, 복잡한 꿈의 공간을 지배하는 수학적 원리: 위상수학 | 영화에 의미를 더하는 장치들: 불가능한 도형과 도형 패러독스
Chapter 5 수학으로 짓는 건축, 더 견고하고 아름답다
수학이 깃든 허니콤 구조의 <어반 하이브>: 육각형의 비밀 | 수학의 신비를 품은 <부띠끄 모나코>: 프랙털 | 전통 한옥, 아름다움과 과학을 아우르다: 사이클로이드와 쪽매맞춤 | <GT타워>와 고려왕릉에 숨어 있는 고려의 수학은?: 황금비와 금강비 | 석굴암에는 고도의 수학 개념이 녹아 있다: 무리수
Chapter 6 동양고전 속에 싹튼 수학적 사고
고대 논리학의 꽃 『묵자』에 깃든 수학: 산목과 기하학의 기초 | 『장자』와 나비효과에서 보이는 수학적 정의: 카오스 | 『천자문』에 담긴 우주의 진리와 수의 탄생: 고대의 숫자 | 『손자병법』과 진시황, 병법과 치국에 수를 쓰다: 도량형 | 『삼국지』 속 ‘계륵’에 담긴 수학적 비밀: 암호
Chapter 7 역사 속 인물이 풀어내는 수학 이야기
시로 수의 개념을 확장한 김삿갓: 수의 단위 | 아르키메데스는 모래알을 다 셌을까?: 수의 확장 | 이순신 장군이 해전에서 승리한 결정적인 비법은?: 학익진과 망해도술 | 오락 수학의 틀을 마련한 최석정의 『구수략』: 마방진 | 지구 둘레를 측정한 콜럼버스와 에라토스테네스: 원주율과 사영기하학
Chapter 8 명화로 그려진 놀라운 수학의 세계
<봄>과 <비너스의 탄생>, 그 아름다움의 비결은?: 황금비 | 최초로 원근법을 적용한 <성 삼위일체>: 소실점과 수열 | 왜상을 통해 진실에 다가가는 그림: 원근법과 사영기하학 | 디도가 카르타고를 세울 때 사용한 수학은?: 등주문제 | 차원을 활용한 <십자가에 못 박힌 예수>: 4차원 입체도형 | 세상에서 가장 큰 그림, <아폴로니안 개스킷>: 기하학 | <아테네 학당>에 총출연한 수학자들: 고대 수학자들의 회합
주석 | 찾아보기
7차 개정 교육과정 수학교과서 집필잦의 스토리텔링 융합수학
현대인이라면 누구나 알게 모르게 수학을 활용하며 살아간다. 특히 우리가 논리적으로 생각하고 행동하는 이면에는 수학적 인식이 기본으로 깔려 있다. 이러한 원리들은 오늘날 지식정보사회에서 활용되지 않는 곳이 없다. 수학이 어느 분야와 어떻게 융합되고 통섭이 가능한가를 따지는 것은 어쩌면 어리석은 일일지도 모른다. 왜냐하면 수학은 오늘날 모든 분야와 통섭・융합을 지속적으로 반복하고 있기 때문이다.
그러나 그렇게 일상 모든 분야에 숨어 있는 수학은 교과서에서 배운 내용만으로는 설명할 수 없는 게 대부분이다. 또한 입시 위주의 획일적인 학습법으로 수학이란 학문에 반감을 가진 사람도 많다. 수학을 전공하는 사람들조차 수학이 얼마나 다양한 분야에서, 어떤 방식으로 활용되고 있는지 모두 알지는 못한다.
『수학, 인문으로 수를 읽다』는 인문학적 사고를 기반으로, 실생활과 연계되어 있거나 다른 분야와 융합된 흥미로운 수학 원리를 독자들이 쉽게 이해할 수 있는 스토리텔링 방식으로 설명하고자 한다. 이러한 접근 방식은 새로운 교과과정과도 통하는 것으로, 7차 개정 교육과정 수학교과서 집필자이기도 한 저자의 고민이 반영된 것이다. 특히 중학교 수준의 수학을 공부한 사람이면 이해할 수 있는 내용을 선별했으므로, 수학을 집중적으로 학습하는 고등학생들이나 좀 더 깊은 수학적 원리에 다가가기를 원하는 대학생들, 또는 본의 아니게 수학과 멀어졌던 성인들에게 도움이 되어줄 것이다.
이 책은 또한 수학이란 학문에 대한 올바른 학습법을 제시하고자 한다. 수학을 건축에 비유한다면, 수학책의 목차는 건물의 설계도라고 할 수 있다. 설계도에 따라 정해진 순서와 모양으로 건물을 완성하듯, 수학도 목차에 따라 공부가 진행된다. 설계도를 보고 지으려는 건물의 형태를 알 수 있듯이, 수학책에 제시된 목차를 보면 어떤 내용을 공부할 것이며 그 순서는 어떻게 된다는 것을 한눈에 이해할 수 있다.
Chapter 1 수학은 모든 분야에 숨어 있다
처음을 여는 장에서는 먼저 수학을 왜 알아야 하는지를 흥미로운 예를 통해 설명했다. 수학이 필요한 이유와 본질을 이해한다면, 많은 사람들이 기피하는 학문으로서 수학에 대한 오해를 풀고 두려움과 거부감을 줄일 수 있을 것이다.
Chapter 2 수학과 음악, 환상의 조화를 이루다
이 장에서는 수학과 음악의 관계를 소개했다. 피타고라스는 인간이란 존재가 신에 가까워지려면 반드시 수학을 공부해야 한다고 주장하면서, 수학적 원리를 이용한 음악으로 마음을 수양하는 방법을 제시했다. 현대의 많은 음악가들도 더 완벽한 작품을 만들기 위해 다양한 수학적 도구를 이용했는데, 구체적인 예를 통해 그 원리를 이해해본다.
Chapter 3 수학을 알면 경제가 보인다
한 나라의 생산, 교환, 분배, 재화 및 서비스의 소비와 관련된 인간의 모든 활동을 가리키는 경제는 특히 수학을 기본으로 하는 분야다. 이 장에서는 주가, 금융공학, 게임 이론, 지니계수, 인구론 등 경제학에서 활용되는 수학 이론에 대해 알아보았다.
Chapter 4 영화 속에서 빛나는 수학적 아이디어
수학자는 자신의 생각을 문자와 수를 이용해 다른 사람에게 전달할 메시지로 만드는 사람들이다. 이런 면에서 보면 수학은 수학자라는 예술가가 만든 작품과 같다. 흔히 종합예술이라 일컬어지는 영화에는 작가나 감독이 의도했든 의도하지 않았든 상관없이 수학적 원리가 녹아 있다. 영화를 감상하면서 다양한 수학 이론을 찾아본다면 작품의 주제에 한층 더 다가갈 수 있을 것이다.
Chapter 5 수학으로 짓는 건축, 더 견고하고 아름답다
오늘날 건축 분야에서 수학은 설계 및 시공에 관련된 변수들을 다루기 쉽게 만들어 건축가들의 구상을 구현 가능하게 해준다. 쉽게 말해, 건축가들은 좀 더 아름답고 튼튼한 건물을 짓고자 건물 설계나 시공 시 수학 원리를 활용한다. 이 장에서는 현재 우리 주변에서 흔히 볼 수 있는 건물뿐만 아니라, 옛 조상들이 세운 놀라운 건축물에 활용된 수학 원리를 소개했다.
Chapter 6 동양고전 속에 싹튼 수학적 사고
이 장에서는 동양고전 속에 숨은 수학 원리를 찾아보았다. 다양한 사고가 공존하는 철학이나, 천동설이 지동설로 대체됐듯 거짓으로 밝혀진 이론은 용도폐기되는 과학과 달리, 수학에서는 고대부터 참이라고 확인된 사실만 차곡차곡 쌓여왔다. 따라서 수학을 제대로 이해하려면 반드시 옛사람들이 읽었던 서적들을 살펴봐야 한다. 시작을 알아야 그다음을 알 수 있고, 오늘날의 첨단수학에까지 접근할 수 있기 때문이다.
Chapter 7 역사 속 인물이 풀어내는 수학 이야기
이 장에서는 전문적으로 수학을 연구하지는 않았지만 여러 분야에서 그 이론을 활용한 인물들의 이야기를 통해, 수학을 공부해야 하는 이유를 조금 더 깊이 이해하고자 한다. 인류 역사 속에서 수많은 사람이 수학을 활용해왔고, 지금도 활용하고 있다. 동양과 서양, 문학․천문학․전쟁 등, 지역과 분야를 뛰어넘어 역사 속 인물들이 활용했던 수학 원리를 알아본다.
Chapter 8 명화로 그려진 놀라운 수학의 세계
마지막 장에서는 여러 미술작품에 적용된 수학 원리를 알아보았다. 특히 서양미술의 싹을 키운 자양분은 수학이라고 할 정도로 수학과 회화는 역사적으로 깊은 관련이 있다. 또한 미술의 주요 형식인 조화․균형․통일성․대칭 등은 모두 수학을 필요로 하는 부분이다. 이러한 원리를 알고 아름다운 예술작품을 감상한다면 깊이 있는 예술적 감성을 지닐 뿐 아니라, 수학 원리 또한 더욱 쉽게 이해할 수 있을 것이다.
수학을 공부하는 이유
수학의 역사는 인류의 역사와 함께 시작되었으며, 인간의 다양한 고민을 해결하고 문명을 발전시키는 원동력이 되어왔다. 고대의 철학자이자 수학자인 피타고라스는 만물의 근원을 알려면 반드시 수학을 공부해야 한다고 말했다. “산술, 음악, 기하학 그리고 천문학은 지혜의 근본으로 1, 2, 3, 4의 순서가 있다.” 피타고라스에 따르면 산술은 수 자체를 공부하는 것이고, 음악은 시간에 따른 수를 공부하는 것이며, 기하학은 공간에서 수를 공부하는 것이고, 천문학은 시간과 공간에서 수를 공부하는 것이다. 이는 모든 분야에 수학 원리가 들어 있다는 말에 다름 아니다.
오늘날 수학 원리를 활용하여 여러 문제를 해결하는 능력 및 태도는 개인의 관심 분야를 이해하는 데 필수적일 뿐만 아니라, 전문적인 능력을 향상하고 합리적 의사결정 방법을 습득하는 데도 중요하다. 그런데 현실적 필요성만 지나치게 강조하다 보면 ‘순수수학’은 발전할 수 없고, 순수수학이 발전하지 못하면 실생활에서의 문제를 쉽게 해결하게 해주는 ‘응용수학’도 발전하기 힘들다. 그렇기 때문에 타 학문과의 긴밀한 상호작용이 무엇보다 중요한 것이다.
“피보나치 수와 황금비는 음악에서도 찾을 수 있는데, 대표적인 것이 피아노의 건반이다. 도(C)에서 출발하여 7개의 흰 건반 사이에 2개와 3개로 그룹 지어진 5개의 검은 건반이 있고 여덟 번째 음이 한 옥타브가 되는데, 이를 모두 더하면 13이 된다. 잘 알다시피 이는 모두 피보나치 수다.”(「Chapter 2 수학과 음악, 환상의 조화를 이루다」에서)
“창고에 쌓인 가마니에 들어 있는 콩의 개수를 일일이 세기는 어렵다. 그러나 콩 한 홉은 금방 셀 수 있다. 이를테면 한 가마니는 10말이고, 1말은 10되이며, 1되는 10홉이므로 한 홉에 들어 있는 콩의 개수가 500개면 한 가마니에 들어 있는 콩의 개수는 500×10×10×10=500000(개)이라고 추정할 수 있다. 이와 같이 전체를 조사하지 않고 일부만 조사하여 전체를 예측하는 것을 ‘통계적 사고방식’이라고 한다.”(「Chapter 4 영화 속에서 빛나는 수학적 아이디어」에서)
“꿀벌은 집을 만들면서 본능적으로 “가능하면 적은 재료로 튼튼하고 꿀을 많이 저장할 수 있는 집”을 만들려고 노력할 것이다. 만약 방을 하나만 만들어야 한다면 원 모양이 가장 알맞을 것이다. 원은 같은 둘레를 가진 평면도형 중에서 가장 넓기 때문에 재료도 적게 들고 꿀도 많이 저장할 수 있다. 하지만 원을 여러 개 이어붙이면 원과 원 사이의 틈새가 넓고, 튼튼하지가 않다. 평면을 완벽하게 채울 수 없기 때문이다.”(「Chapter 5 수학으로 짓는 건축, 더 견고하고 아름답다」에서)
=저자 이광연=
성균관대학교 수학과를 졸업한 뒤 같은 학교 대학원에서 박사학위를 받았다. 미국 와이오밍 주립대학교에서 박사후과정을 마친 후 아이오와 대학교에서 방문교수를 지냈다. 지금은 한서대학교의 수학교수로 있으며, 제7차 개정 교육과정 중․고등학교 수학교과서 집필에 참여했다.
그간 수학 알레르기 반응을 보이는 독자들을 위해 『웃기는 수학이지 뭐야』, 『밥상에 오른 수학』, 『신화 속 수학이야기』, 『수학자들의 전쟁』, 『어린이를 위한 수학의 역사 1~5』, 『이광연의 수학블로그』, 『멋진 세상을 만든 수학』, 『비하인드 수학파일』, 『시네마 수학』 등 많은 책들을 집필했으며, 그 밖에 강연 등을 통해 ‘쉬운 수학, 재미있는 수학, 꼭 알아야 할 수학’을 알리는 데 주력하고 있다.