AutoML 인 액션 - AutoKeras 창시자가 안내하는, AutoKeras와 KerasTuner로 머신러닝 파이프라인 최적화하기
칭취안 송.하이펑 진.시아 후 지음, 박찬성 옮김 / 한빛미디어 / 2023년 10월
평점 :
장바구니담기



우리의 삶에 머신러닝은 대중적으로 활용할 수 있는 도구로 자리 잡고 있는데요. 그러나 공개된 머신러닝 모델을 그대로 활용하기보단 튜닝 과정이 필요하고 생각합니다. 튜닝 하는 과정에선 수많은 실험을 통해 하이퍼파라미터를 조정하는 최적의 모델을 도출할 수도 있습니다. 머신러닝에 대한 전문성을 조금이라도 보유해도 머신러닝의 이점을 쉽게 누릴 수 있습니다.

 

이번에 소개할 자동화된 머신러닝 AutoML 인 액션 책을 소개합니다. AutoML의 핵심을 담은 AutoKeras 창시자의 집필서로써 ML 전문가의 비밀 노트처럼 ML의 핵심 개념과 ML 자동화를 위한 최적화 알고리즘까지 담고 있습니다.

 


AutoML은 머신러닝에 대한 전문 지식이 없어도 하이퍼파라미터 튜닝과 모델 최적화를 간편하게 수행할 수 있게 되었습니다. 그리고 AutoKeras와 KerasTuner와 같은 도구들을 활용해 작업에 맞게 머신러닝 모델을 빠르게 조정할 수 있도록 도와줍니다.  AutoML 인 액션은 단계별로 AutoML의 기본 개념부터 고급 주제까지 체계적으로 학습할 수 있도록 구성되어 있습니다.

 

AutoML의 목표는 통계학자나 컴퓨터 과학자뿐만 아니라 의사, 토목 엔지니어, 중소기업 창업가 등 다양한 분야 사람들이 쉽게 머신러닝에 접근할 수 있도록 돕는 것입니다. AutoML 인 액션은 파이프라인을 편리하게 설계하고 학습시키는 방법을 설명합니다. 총 9장으로 구성되어 있지만 큰 틀로 보면 3개로 나눠지는데요.

 

첫 번째는 1~3장으로 AutoML을 정의하고 핵심 개념을 먼저 다룹니다. AutoML을 배우기 위한 사전 지식을 습득할 수 있으며, 머신러닝 문제를 해결해 본 경험이 없는 분들을 위해 효과적으로 AutoML을 설계하고 기본 구성 요소를 쉽게 배울 수 있습니다.

 


두 번째는 4~6장으로 본격적으로 AutoML을 도입해 머신러닝 문제를 해결하고 솔루션을 개선하는 내용을 담고 있습니다. 지도 학습 문제에 대한 AutoML로 엔드투엔드 딥러닝 솔루션과 AutoML의 탐색 공간을 사용자가 원하는 방식으로 정의하는 방법까지 상세하게 알려주는데요. 계층별 설계를 통해 비지도 학습 모델과 최적화 알고리즘을 더 유연하게 튜닝할 수 있습니다.

 


세 번째는 검색 기법과 가속화 전략의 차원에서 일부 고급 AutoML 설계 및 설정에 대해 알아갈 수 있습니다. 7~9장으로 구성되어 있으면 AutoML 탐색 공간을 순차적으로 탐색하는 기법을 구현하는 방법, 제한된 계산 자원의 환경에서 검색 과정을 가속화하는 기법을 배울 수 있습니다. 마지막으로 몇 가지 보충 자료와 함께 지금까지 배운 핵심 개념을 다시 살펴볼 수 있는데요. AutoML를 기술을 소개하고 이 분야를 더 깊이 이해하고 파고들기 위한 방향을 제시합니다. 

 


AutoML의 기본 개념부터 응용 주제까지 체계적으로 학습해 보고 싶은 머신러닝 엔지니어, 프로젝트 관리자, 데이터 과학자 및 분석가, 하계 연구자에게 AutoML 인 액션을 추천합니다. ML 모델 개발 과정을 익히기 위한 이미지, 텍스트, 정형 데이터 분류 예제까지 제공합니다. 이뿐만 아니라 컬러풀한 그림으로 복잡한 개념을 이해하기 쉽게 시각적으로 보여줌으로 더 쉽게 AutoML에 접근할 수 있습니다. AutoML 인 액션을 통해 머신러닝 한계를 넘어 빠른 모델을 만들어 보세요.

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo