-
-
구글 BERT의 정석 - 인공지능, 자연어 처리를 위한 BERT의 모든 것
수다르산 라비찬디란 지음, 전희원.정승환.김형준 옮김 / 한빛미디어 / 2021년 11월
평점 :
절판
이 책을 3장까지 읽고 든 생각은 '아이고, 수학공식이 별로 없는 수학책이구나'였습니다. 어쩐지 BERT부터 허깅페이스에 BERT의 파생 모델, BERTSUM 등 세세한 내용을 다루다가, 막판에는 한국어 모델인 KoBERT, KoGPT2까지 한 권에 죄다 다룬다고 해서 덥석 클릭했습니다만, 이걸 장점으로만 여겨서는 안 되었습니다.
그렇다 해도 몹쓸 책은 아닙니다. 제가 속한 팀에서는 이런 저런 자연어 처리를 하는데 팀원들이 실제로 운영 서비스에 쓰는 기술들이 이 책에 많이 담겼습니다. 그래서 이 책을 고르기도 했던 것입니다. 다만 이 책을 잘 소화하려면 책만 읽어서는 힘들 거라고 봅니다. 책 초반에 소개하는 아래 GitHub 프로젝트를 방문하여 코드를 열어 보길 바랍니다.
https://github.com/PacktPublishing/Getting-Started-with-Google-BERT
코드와 같이 읽으면 훨씬 낫습니다. 그런데 코드를 잘 읽으려면 PyTorch를 먼저 알아둬야 합니다.
https://www.aladin.co.kr/search/wsearchresult.aspx?SearchTarget=Book&SearchWord=PyTorch
이걸 알아야 실습을 해보겠지요.
물론 수학적사고가 체화된 독자라면 술술 읽힐 거라 봅니다. 그렇더라고요. 부럽습니다.
마지막으로, 본문의 연습문제 해답은 부록으로 있습니다. 참 다행입니다. 그러고 보니 학부 교재로 써도 좋을 분량이 아닐까 합니다. 자연어처리 II 정도 되는 과정에 알맞겠습니다. 다시 말해 자연어처리를 처음 공부하는 참이라면 자연어처리 입문서를 먼저 읽는 게 좋습니다. Word2Vec을 모르는 채로 이 책을 읽어서는 놓치는 부분이 많을 겁니다. 기왕이면 PyTorch를 활용하는 자연어처리 입문서가 낫겠습니다.
https://www.aladin.co.kr/search/wsearchresult.aspx?SearchTarget=Book&SearchWord=PyTorch+%EC%9E%90%EC%97%B0%EC%96%B4%EC%B2%98%EB%A6%AC&x=0&y=0
싫은 소리를 먼저 하기는 했지만, 인공지능 주제로는 입문서만 범람하는 와중에 아주 소중한 심화서입니다. 이런 책이 아니면 인터넷 바다를 정처 없이 헤매야 합니다.