소플의 처음 만난 리액트 - 리액트 기초 개념 정리부터 실습까지 소문난 명강의
이인제 지음 / 한빛미디어 / 2022년 5월
평점 :
구판절판



회사에서 내부적으로 사용할 웹사이트가 필요할 때

다른 개발자들이 종종 리액트를 추천하곤 했고, 결국은 리액트로 만들었었다.


Long long time ago,

PHP / ASP / JSP 시절에 웹사이트를 만들었었던 나는 ...


"그게 대체 뭔데!?"


Kubernetes 공부하면서 동작 테스트를 위한 간단한 웹서버를 띄울 때

Node.js를 이용해 정말 간단한 웹페이지를 만들어 보면서

새로운 세계를 살짝 엿보기는 했었지만 ...


그러던 중 집으로 배달된 아름다운 책 한 권 !!!

나처럼 리액트가 뭔지 모르는 초심자를 위한 책이다 !!!

거기에다가 무료 동영상 강의까지 제공 되다니 !!!

나를 위한 찰떡 궁합 !!!

목차를 살펴보면,

정말 말 그대로 초심자를 위해 엄청난 고민을 했다는 것이 딱 느껴진다.


일단, 너무 많은 내용을 포함하지 않아서 부담감이 크지 않은 점이 너무 좋았다.


꼭 알아야할 기초 중심으로 설명해주면서

마무리로 미니 프로젝트를 하나 함으로써 정리를 할 수 있게 해주고 있다.

이 책의 가장 큰 매력 ... 동영상 강의 !!!


아는 사람은 알고 있는 goormedu에서 찾아볼 수 있다.

  - https://edu.goorm.io/

goormedu 사이트에서 '리액트'로 검색을 해보면

리액트 관련한 많은 강의를 찾아볼 수 있다.


'처음 만난 리액트(React) v2' 강의를 선택하면 된다!!!

무료다!

책 없이 강의만 봐도 충분할 것 같은 퀄리티다.


인프런에서도 강의를 볼 수 있다.

  - https://www.inflearn.com/course/처음-만난-리액트/

동영상 강의 내용은 같다.

유튜브로도 바로 볼 수 있다.

  - https://www.youtube.com/c/소플TV

동영상 강의의 컨텐츠 내용은 모두 같다.

각자 편한 방식으로 선택하면 된다.


유튜브가 접근성이 편리해 보이지만,

goormedu 또는 inflearn을 통해서 강의를 듣게 되면 진도 체크 같은 도움을 받을 수 있어서 좋다.


그러면, 이제 GitHub를 방문해보자.

  - https://github.com/soaple

저자의 사진도 볼 수 있다! (어?! 훈남이시네!!!)

실습코드도 제공되니 이를 활용하면 보다 편하고 재미있게 공부할 수 있다.



다시 책 내용을 살펴보도록 하자.


각 장의 앞 부분에는 어떤 것을 공부할 것이라고 알려주는 Preview 내용이 있다.

장을 마칠 때에는 Summary로 정리까지 해준다.

개인적으로 이렇게 정리해주는 것을 정말 좋아한다.


작은 요소에 매몰되지 않고 전체적인 큰 그림으로 보면서

지금 무엇을 공부하려고 하는 지, 지금까지 무엇을 공부한 것인 지 알면서 공부하는 것이 정말 중요하다!!!


마지막으로 살펴볼 내용은 ...

리액트를 공부하기 위한 책인데, 리액트의 단점에 대해서도 설명해주고 있다.


단점을 설명하긴 했지만,

그렇다고 절대 리액트의 매력이 떨어진다고는 생각하지 않는다.


개인적으로 크로스-플랫폼 프레임워크로써 플러터(Flutter)의 세상이 오기를 기다리고 있는 입장이지만

최소한 아직까지는 리액트의 세상이기에~



책 내용을 살펴본 느낌을 적어보자면,

저자가 정말 많은 고민을 하고, 애정을 쏟아서 정성들여 만든 초급자를 위한 안내서라고 느껴졌다.


강의를 많이 하던 분이라거 그런지

내용 하나 하나가 직접 설명을 해야하는 책임감을 갖고 작성된 것 같았다.


리액트 초급자라면 정말 무조건 선택해야 하는 책이라고 추천하고 싶다!!!


"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
쉽게 배우는 AWS AI 서비스 - 챗봇, 음성비서, 크롤러 프로젝트를 구현하며 만나는 서비스형 AI
피터 엘거.오언 셔너히 지음, 맹윤호 외 옮김, 곽근봉 감수 / 한빛미디어 / 2022년 4월
평점 :
장바구니담기





AWS에서 제공해주는 AI 서비스들을 어떻게 사용하는지

실제 시스템들을 구현해나가며 다양한 그림들과 코드들을 통해 친절히 설명해주는 책이다.



이 책은 22년 4월에 출간한 따끈따끈한 책이지만, 원서를 찾아보니 2020년에 출시 된 책을 번역한 것이었다.

  - https://www.manning.com/books/ai-as-a-service


번역하면서 그동안 변경된 인터페이스들은 다시 스크린샷 뜨고 예제 코드도 손봤다고 하니

원서 출간일이 좀 되었다고 해서 걱정할 필요는 없을 것 같다.



보면 알겠지만, 초보자를 위한 책은 아니다.

그리고 프론트엔드 개발자가 아닌 백엔드에 치우친 내용을 다루고 있는 책이다.




크게 3부분으로 나뉘어져 있으며

1부는 그냥 알면 좋을 내용들을 살짝 터치하면서 지나가는 내용이고

2부가 본격적인 내용들이고

3부는 앞에서 공부한 것들을 정리하는 느낌의 내용이다.


결론은 2부가 핵심!



근본적인 질문인데,

왜 AWS AI 서비스를 가지고 이 책을 만들었는지에 대한 대답인데,

결론은 3대 Cloud 다 하면 좋았겠지만, 힘들까봐 가장 많은 사용자를 갖고 있는 AWS를 선택했다는.



AWS에서 제공해주는 AIaaS 플랫폼들을 보여주고 있는데,

사실 AI 관련된 것 뿐만 아니라

AI 서비스를 위한 시스템을 구축하기 위해서 필요로 하는 것들을 모두 보여주고 있는 것이 맞다.



이 책에서 아쉬운 점인데 (개인적인 취향이 많이 섞인)

manning에서 제공해주는 ebook을 보면 위 이미지와 같이 color로 나오는데, 보기에 훨씬 좋다.

이 책은 흑백이라서 좀 아쉽다.




책에서 중요한 내용은 아니지만,

이런 사진들을 볼 때 흑백과 컬러의 차이는 극명하지 않나 싶다.



책에서 풀어가는 방식은 위와 같이

앞 부분에서 어떤 시스템을 만들고자 한다는 것을 설명해주고 시작한다.



그리고 시스템 아키텍처를 보기 좋게 그림으로 표현해주어서

어떻게 구성이 되고 지금 어떤 것을 공부할 것인지 알 수 있는 점은 정말 좋은 것 같다.



총평을 하자면,

클라우드에서 제공해주는 다양한 서비스들, 특히 서버리스 서비스들을 활용해서

AI 서비스들을 어떻게 구성할 것인지 공부하고자 하는 분들에게는 정말 많은 도움이 될 것 같다.

어떤 신규 프로젝트를 진행할 때 프로토타입 또는 MVP를 만들어야 할 때에도 정말 좋을 것으로 생각된다.


주석이 충분하지는 않지만 제공되는 예제 파일도 있다.

  - https://github.com/hanbit/ai-as-a-service



"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
케라스로 구현하는 딥러닝 - 예제를 따라 하며 배우는 딥러닝 인공신경망
김성진 지음 / 한빛미디어 / 2022년 4월
평점 :
장바구니담기



제목 그대로

사용자 친화적인 케라스(Keras)로 딥러닝(Deep Learning)을 공부할 수 있는 책이다.



4월에 출간된 따끈따끈한 책이다.



책을 볼 때에는 새하얀 종이에 컬러풀한 인쇄로 보기에 아주 좋은데,

조명 아래에서 책 사진을 찍었더니 아래처럼 빛 반사가 좀 있다(사실 책 볼 때에도 조명 반사가 좀...).



정말 친절하게도 책의 구성에 대해서 서술형으로 설명을 해주고 있다.


책의 목차만 가지고 전체적인 흐름을 파악하거나 각 챕터에 대해서 이해를 하기에는 어려울 때가 있는데

이렇게 친절하게 책의 구성에 대해서 이야기 해주는 것처럼 설명이 있어서 정말 좋았다. 



책이 쉬운 것 같으면서도 어려운데,

신경망(Neural Network)의 전체적인 내용을 책 한 권에 모두 담고 있다보니 뒷부분은 사실 좀 어려웠다.


(사실 내가 딥러닝에 대해 깊이 알지 못하고 앞부분만 알고 있다보니 뒷부분이 마냥 어렵게 느껴졌을 것이다!)



처음에 책을 접했을 때 좀 당황했던 것이 "ANN"이라는 용어였다.


ANN (Artificial Neural Network, 인공신경망) 이라는 명칭은 보통

생물학적인 신경망, 즉 Neuron(뉴런)에서 영감을 얻어 발발된 통계학적인 학습 알고리즘을 지칭하는

일반적인 용어로 알고 있었다.



그런데, 이 책에서는 SNN(Shallow Neural Network, 얕은 신경망), 2-layer Neural Network,

또는 그냥 NN(Neural Network)이라고 부르는 제일 단순한 NN을 지칭하는 용어로 ANN을 사용하고 있다.


물론, 이런 내용은 책에서 잘 설명해주고 있다.


그리고 이론적인 내용도 너무나 잘 설명해주고 있다.


책에서 기대하는 대상 독자는 광범위 하다.

Deep Learning을 공부하는 모두가 대상 독자이다.



예제 소스 코드도 너무나 잘 제공해주고 있다.


   - https://github.com/jskDr/keraspp_2022



책을 살펴본 개인적인 의견으로 말하자면,

이 책은 Deep Learning을 공부하면서 직접 코드로 구현을 어떻게 하는지 살펴보고 싶은 초급자에게 적합할 것 같다.


책도 그렇고, 제공해주는 예제 소스도 보면

옆에서 강사님이 친절하게 설명해주는 느낌처럼 쓰여져 있다.


이 부분이 어떤 용도인지 왜 그렇게 되는 것인지 설명해주듯이 쓰여져 있어서

혼자서 공부하기에 적합한 것 같다.



"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
파이썬 라이브러리를 활용한 머신러닝 - 사이킷런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서, 번역개정2판
안드레아스 뮐러.세라 가이도 지음, 박해선 옮김 / 한빛미디어 / 2022년 2월
평점 :
장바구니담기




사이킷런 핵심 개발자가 쓴 머신러닝과 데이터 과학 실무서

Introduction to Machine Learning with Python

파이썬 라이브러리를 활용한 머신러닝 (번역개정2판)



C / C++ / Java 등의 프로그래밍 언어를 공부하고

Linux, Server, Network 등에 대해서 경험을 쌓아오며 지금까지 밥벌이를 해온 나에게

머신러닝 / 딥러닝 이라는 신문물이 등장하면서 상당한 당혹감을 느낄 수 밖에 없었다.


그래서 먹고 살기 위해 머신러닝에 대해 공부를 시작할 수 밖에 없었는데,

벡터, 행렬, 접선, 미분 ... 나를 괴롭히는 수학 !

이과생이지만 사실 수포자인 나에게 정말 가혹한 현실이 아닐 수 없다.


지금까지 Software Engineer로 먹고살아온 나로써는

이러한 수학적인 접근 보다는

라이브러리를 이용한 활용 중심으로도 접근해보고 싶다는 생각이 있었다.


이에 걸맞는 책이 바로 이 책이 아닐가 싶다.



나와 같은 Needs가 있는 사람이 적지 않았던 것 같다.

2017년 초판에 이어 개정판을 한 번도 아니고 두 번째나 발행 한 것을 보면 말이다.



그런데, 개정을 해주는 것만으로도 감지덕지인데, 그냥 그저 그런 수정판이 아니다.

scikit-learn 1.x 버전에 맞춰 업데이트 된 것 뿐만 아니라 내용도 더 추가가 되었다.



오래된 이미 검증된 책이라 그런지

책의 전체적인 구성도 너무나 잘 요약해서 설명해주고 있다.



한국어판을 위한 저자 인터뷰도 실려있다.

형식적인 인터뷰가 아니라 독자들의 질문에 대한 답까지 포함된

저자의 솔직한 심경도 그대로 담겨진 그런 인터뷰다.



목차를 보면 한국어판에서 추가된 항목을 볼 수 있다.

Chapter 한 개당 하나 정도씩 추가 되어 있고, 그 내용도 정말 충실하다.



개조식 서술 방식이 아니라 이야기 하는 방식으로 풀어나가는 책 내용도 정말 마음에 든다.

말 그대로 술술 읽어나가며 공부할 수 있기에 책에 대한 부담감이 훨씬 적게 느껴지기 때문이다.



그리고 이 책의 가장 큰 장점 중 하나라고 꼽고 싶은 예제 파일 !!!

  - https://github.com/rickiepark/intro_ml_with_python_2nd_revised


옮긴이 박해선님이 훨씬 더 좋게 업그레이드 해준 내용을 담고 있다.



최근 딥러닝의 인기에 조금 버림받은 것 같은 느낌이 들긴하지만

사실 대부분의 문제는

scikit-learn으로 구현되는 머신러닝으로 해결하는 것이 훨씬 더 효율적이지 않을까 한다.


머신러닝 또한 수학적인 배경을 갖고 깊이 공부하는 것이 중요하긴 하지만

활용을 중심으로 scikit-learn 라이브러리 활용에 대해 공부하는 것도 괜찮은 접근일 것이다.



요즘 공부할 것이 너무 많아 걱정이긴 하지만

꼭 공부해야할 책 목록에 이 책을 꼭 포함시킬 것이다 !!!



"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
AI로 일하는 기술 - 인공지능은 어떻게 일이 되는가: 메타버스, NFT, 자율주행 결국 이 모든 것은 인공지능이다
장동인 지음 / 한빛미디어 / 2021년 12월
평점 :
장바구니담기



컴퓨터공학 전공한 분들도 읽어야 하는 AI에 대한 인문학 도서!

사실 우리 파트장님, 팀장님에게 추천하고 싶은 책!




어떻게 ML(머신러닝)을 하는지, PyTorch를 어떻게 사용하는지에 대한 책이 아니다.




AI는 무엇이며, 역사는 어떻게 되었는지

그리고 Machine Learning과 Deep Learning은 어떤 차이가 있는지 등에 대해서 친절하게 쉽게 이야기해주는 책이다.




책의 뒤에서는 AI로 어떤 것까지 가능하며

산업 분야별로 AI가 어떻게 도입될 것인지 어떻게 활용하는지에 대한 내용도 있다.




설명을 위해 중간 중간 그림도 삽입되어 있는데,

부담없이 보고 읽고 이해하기 쉽게 잘 정리되어 있다.



풀컬러는 아니라서 조금 아쉽기는 하지만 (개인적인 취향으로 알록 달록한 것을 좋아해서 ^^)

그래도 보기에 괜찮다.


그리고 책의 구성이 질문 형식의 화두를 던지고

그에 대한 답을 하는 방식으로 친절하게 설명하는 방식이라서 읽고 이해하기가 수월하다.



개발자로써 최근 AI/ML에 대해서 공부를 하고 있기에

Tensorflow, PyTorch, CNN, RNN 등에 대해서 알려주는 책들은 많이 봤지만

이처럼 AI에 대한 전반적인 설명이나 산업에 있어서의 AI에 대한 트렌드를 설명해주는 책은 처음이었다.


이 책을 보면서 계속 머릿속에 드는 생각은

AI/ML에 대해서 공부를 따로 하지 않은

우리 윗분들이 꼭 한 번 읽어봤으면 좋겠다라는 것이었다.


분명 기준 S/W 개발과는 차이가 있는 분야임에도 불구하고

AI/ML 과제를 S/W 개발 경험 밖에 없는 분들이 PL 역할을 하곤 한다.


이런 분들에게 이제와서 AI/ML 공부를 하라고 하는 것은 사실 무리이고

최소한 이 책에서 나온 정도의 상식은 갖췄으면 하는 바램에

이 책을 추천한다.


물론 AI/ML 개발 또는 연구하는 분들에게도 추천하는 책이다!



"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo