혼자 만들면서 공부하는 딥러닝 - 이미지/텍스트 분류 및 요약, 전이 학습, 트랜스포머까지 20개 딥러닝 모델 구현하기 |저자 직강 유튜브 강의 + 오픈채팅 제공 혼자 만들면서 공부하는 시리즈
박해선 지음 / 한빛미디어 / 2025년 5월
평점 :
장바구니담기


"한빛미디어 서평단 <나는리뷰어다> 활동을 위해서 책을 협찬 받아 작성된 서평입니다."



개발자라면 누구나 알고 있을 "혼공" 시리즈.


혼자서도 공부할 수 있도록 잘 만들어진 책일 뿐만 아니라,

동영상 강의도 제공해주고 샘플 코드도 제공해주는 정말 혜자와 같은 교과서들이다.


그런데, 이제는 "혼공"이 아니라 "혼만" 시리즈가 나오고 있다.


"혼자 만들면서" 시리즈 !!!

그것도, "딥러닝" !!!

거기다가, "박해선"님 !!!



5월에 출간한 따끈따끈한 책이다.


딥러닝은 CNN 부터 시작하는 것이 국롤이기에,

이 책 역시 '합성곱 신경망(CNN)'으로 Chapter 01 시작이다.



최근 트렌드는 LLM,

트랜스포머의 디코더 기반으로 만들어진 GPT 모델도 Chapter 05에서 알려주고 있다.



트랜스포머의 인코더와 디코더를 모두 사용하는 모델인

BART와 T5까지 마지막 챕터에서 언급해주고 있다.



이론이 아니라 직접 만들어 보면서 공부할 수 있는 책이라서 정말 마음에 들었다.

그렇다고 이론적인 내용이 없는 것도 아니다. 충분히 친절하게 이론에 대한 설명도 해주고 있다.


더더욱 이 책이 마음에 드는 것은 컬러 인쇄이다!!!

눈이 안아프게 빛 반사도 적은 종이 재질이다!!!



이와같은 "혼공/혼만" 시리즈 책을 정말 제대로 공부하기 위해서는

"혼공학습단"에 지원해서 맛있는 간식을 먹으며 많은 사람들과 함께 공부하는 것이다.



이번 14기 참여 기회를 놓쳤다면.... 다음 15기에 지원하면 된다 ^^

종종 있으니 꼭 기억했다가 참여하길 바란다.


"혼공/혼만" 시리즈 책들은 많이 있으니 관심있는 다른 책도 구매해서~~~ ^^




혼공학습단 활동을 열심히 하면 많은 것들이 생긴다 !!!



혼자 공부할 수 있는 책이지만,

혼자 하다 보면 의욕이 떨어지거나 작심삼일이 되기 쉬운 분들은

이런 활동을 통해서 동기부여를 받으면 좋지 않을까 한다.



화이팅!!!


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
네? 사내 시스템을 전부 혼자 관리하는 저를 해고한다구요? 1
이오 지음, icchi 그림, (주)라이트박스 옮김, 카시로메 유키 원작 / 씨엘비코믹스(라이트박스) / 2025년 4월
평점 :
장바구니담기


2권을 빨리 내놓으시죠!

댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
혼자 공부하는 머신러닝 + 딥러닝 - 케라스와 파이토치로 1:1 과외하듯 배우는 인공지능 자습서, 별책 용어노트, 저자 직강 유튜브 강의 제공 혼자 공부하는 시리즈
박해선 지음 / 한빛미디어 / 2025년 4월
평점 :
장바구니담기


"한빛미디어 서평단 <나는리뷰어다> 활동을 위해서 책을 협찬 받아 작성된 서평입니다."




"박해선"님의 명작 도서, "혼자 공부하는 머신러닝+딥러닝"의 "개정판"이 나왔다 !!!


AI 관련하여 공부를 했던 사람들이라면 아마도 모두 가지고 있을 책이 아닐까 싶은데,

물론 나도 기존 도서를 가지고 있어서 비교 사진을 찍어봤다.



동그라미도 하나 추가되었고, 페이지도 더 많아진 새로운 개정판이다.

그래서인지 정가도 2.6만원에서 3.2만원으로 인상되었다. ㅋㅋㅋ



초판 발행 뒤, 4-5년 정도가 지났으니 물가 인상을 고려하면 정가 인상에 대해서도 충분히 이해가 간다!

벌써 4-5년이 흘렀다니... 처음 이 책으로 공부했던 때가 어제 같은데... 


이 책의 장점은 머신러닝에서부터 딥러닝까지 전반적인 사항을 모두 담고 있다는 것이다.



책에서도 말해주다 싶이, 반드시 순차적으로 공부해야하는 것은 아니다.


머신러닝에 대해서 공부하고 딥러닝을 살펴보는 것이 도움이 되기는 하지만,

필수는 아니기에 과감히 점프하고 딥러닝을 공부하는 것도 나쁘지는 않다.



이 책의 초판이 나오는 시점에서는 Tensorflow가 많이 사용될 때라 괜찮았지만,

최근에는 대부분 Pytorch를 많이 사용하기에 개정판에서 파이토치에 대한 내용을 추가해 준 것은 정말 반갑다.


혼공 시리즈의 책답게 동영상 강의도 멋지게 제공을 해준다.

https://www.youtube.com/playlist?list=PLJN246lAkhQihHwcbrZp9uuwgxQen5HS-



큰 변화가 없는 챕터의 경우에는 기존 동영상 강의를 재활용하셨을거라 생각했는데, 전부 새로 등록하신 것 같다! 와우!


깃허브에 친절하게도 주피터노트북 파일들을 모두 등록해주셨다.

https://github.com/rickiepark/hg-mldl2


"박해선"님의 블로그를 참고하면 좋다. 정오표도 확인할 수 있다.

https://tensorflow.blog/hg-mldl2/



개인적으로 처음에 공부할 때에 이 책을 보고선 좀 당황한 적이 있었다.

다른 곳에서 설명하는 것들과는 조금 다른식으로 접근하거나 설명하는 것들이 있어서였다.


그래서 잠시 이 책을 끊고(?) 이렇게 저렇게 시간이 흘러

"혼공학습단"을 통해 다시 이 책을 공부해 보고자 시작하게 되었는데 !!!


머신러닝이나 딥러닝을 조금 공부하고 다시 이 책을 봤더니 감탄을 할 수 밖에 없었다.

아! 이래서 박해선님이 이 부분을 이렇게 설명을 하셨구나!


혼자 공부할 수 있도록 잘 정리되고 친절한 설명이 되어 있는 책이지만,

사실 이 책의 일부 챕터만 가지고도 책 한권이 나올 수가 있을만큼

크고 방대한 내용을 다루는 책이 바로 이 "혼공머신"이다.


그렇기에 이 책을 제대로 공부하기 위해서는 좀 더 꼼꼼하게 살펴보는 것을 권해본다.


이 책에 대해서 서평을 한 마디로 남겨 본다면,

"머신러닝, 딥러닝"을 공부해보고 싶다면 무조건 추천해드립니다!!!


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
NLP와 LLM 실전 가이드 - 기초 수학부터 실전 AI 문제 해결까지
리오르 가지트 외 지음, 박조은 옮김 / 한빛미디어 / 2025년 3월
평점 :
장바구니담기


"한빛미디어 서평단 <나는리뷰어다> 활동을 위해서 책을 협찬 받아 작성된 서평입니다."



그렇지 않아도 최근에 LLM과 연관된 스터디를 하고 있던 중에 만나게 된 반가운 책

"NLP와 LLM 실전가이드"

 


원서의 제목은 "Mastering NLP from Foundations to LLMs"인데,

한글로 번역하자면... '기초부터 LLM까지, 자연어 처리 완전 정복!' 정도로 될 것 같다 ^^

 

여기서 또 하나 주목해야할 이름이 보인다. "박조은"

데이터분석, Kaggle, Python 같은 것들을 공부하신 분들이라면 한 번쯤은 들어보셨을 이름 ^^

그래서인지 아래와 같이 동영상 강의도 유튜브로 계속 올려주고 계신다. 와우~

 


그리고, 실습을 위한 노트북 파일도 새롭게 손봐서 따로 올려주셨다.

https://github.com/corazzon/Mastering-NLP-from-Foundations-to-LLMs

 

 

원래 제공하는 실습 파일과 비교해보는 것도 재미(?)가 있을 수 있다.

 


위에서 볼 수 있는 원서의 표지 그림을 보면 알겠지만

이 책의 본질은 NLP(자연어 처리) 책이다.

그 기반이 되는 수학적인 요소들을 포함해 LLM까지 언급하고 있는 것이다.

 

 

책에서는 "대상 독자"를 아래와 같이 말하고 있다.

 


내가 생각했을 때에는 "NLP(자연어 처리)와 관련된 전체적인 내용을 훑어보고 싶은 사람"이라고 말해야 하지 않나 싶다.

 

이 책의 목차는 다음과 같다.

 

CHAPTER   1   자연어 처리 개요 살펴보기
CHAPTER   2   머신러닝과 자연어 처리를 위한 선형대수, 확률, 통계 마스터하기
CHAPTER   3   자연어 처리에서 머신러닝 잠재력 발휘하기
CHAPTER   4   자연어 처리 성능을 위한 텍스트 전처리 과정 최적화
CHAPTER   5   텍스트 분류 강화: 전통적인 머신러닝 기법 활용하기
CHAPTER   6   텍스트 분류의 재해석: 딥러닝 언어 모델 깊게 탐구하기
CHAPTER   7   대규모 언어 모델 이해하기
CHAPTER   8   대규모 언어 모델의 잠재력을 끌어내는 RAG 활용 방법
CHAPTER   9   대규모 언어 모델이 주도하는 고급 응용 프로그램 및 혁신의 최전선
CHAPTER 10   대규모 언어 모델과 인공지능이 주도하는 과거, 현재, 미래 트렌드 분석
CHAPTER 11   세계적 전문가들이 바라본 산업의 현재와 미래

 

전체 목차와 함께 이 책의 쪽수 424쪽인 것을 보면 알겠지만

"기초 수학부터 실전 AI 문제 해결까지" 살펴볼 수 있는 책인 것은 맞지만

깊이 있게까지 살펴보려면 다른 자료들을 더 많이 찾아봐야할 것이다.

 

기초 수학부터 언급한다고 하여 좋아할 사람도 있고, 싫어할 사람도 있을텐데....

그냥 말 그대로 한 번 쭉 훑어보고 지나가는 수준의 수학이기 때문에

너무 큰 기대도 너무 큰 걱정도 할 필요는 없을 것 같다.


이 책은 원서 제목 그대로가 딱 적당한 제목인 것 같다.

 

"Mastering NLP from Foundations to LLMs"

(기초부터 LLM까지, 자연어 처리 완전 정복!)


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
밑바닥부터 시작하는 딥러닝 1 - 파이썬으로 익히는 딥러닝 이론과 구현, 리마스터판 밑바닥부터 시작하는 딥러닝 1
사이토 고키 지음, 개앞맵시(이복연) 옮김 / 한빛미디어 / 2025년 1월
평점 :
장바구니담기


"한빛미디어 서평단 <나는리뷰어다> 활동을 위해서 책을 협찬 받아 작성된 서평입니다."


 

AI 관련해서 공부를 한다면 최소한 한 번 이상 마주쳤을 가능성이 농후한,

갖고 있지 않더라도 책 표지를 보면 "아하! 그 책!" 이라고 외칠 그 유명한 책의 "리마스터판"이 나왔다.

벌써 8주년 이라는 것이 더 놀랍다 !!!



꼼꼼한 책을 보면서 혹시나 했는데, 역시나 일본 특유의 꼼꼼함을 보여주는 "사이토 고키"라는 분의 저서이다.

아쉽게도 어느 회사에서 연구하고 계시는지 등의 추가적인 정보는 찾을 수 없었다.


 

오옷! "개앞맵시" !!! 어디서 많이 들어본 닉네임을 갖고 계신 옮긴이.

'구글 엔지니어는 이렇게 일한다'라는 책의 번역도 맡으셔서 익숙한가!?

삼성전자 VD 사업부에서도 근무를 하셨었구나...

인사이트, 골든래빗 등의 출판사를 거쳐 지금은 한빛미디어에서 근무를 하고 계신 것으로 보인다 ^^


 

근래 봤던 책 중에서 중학교 2학년생의 리뷰를 책에 담아준 것은 처음 본 것 같다 !!!

김경수 학생도 대단하고, 한빛미디어도 대단하다는 생각을 해본다.

 

"밑바닥부터 시작하는 딥러닝 (Deep Learning from Scratch)"은 시리즈로 구성되어

현재 5권까지 출간되었고 6권도 출간 예정이라고 한다.



6권이 출간되기에 앞서 1권의 리마스터판이 이번에 다시 출간된 것이다.

 

순서에 상관없이 취사선택(?)하여 볼 수 있다지만

책의 챕터 구성을 보면 1권부터 보는 것이 맞을 것 같다.

 

CHAPTER 1     헬로 파이썬
CHAPTER 2     퍼셉트론
CHAPTER 3     신경망
CHAPTER 4     신경망 학습
CHAPTER 5     오차역전파법
CHAPTER 6     학습 관련 기술들
CHAPTER 7     합성곱 신경망(CNN)
CHAPTER 8     딥러닝

 

이 책은 딥러닝을 이해하는 데 필요한 지식을 기초부터 하나하나 차례로 설명해 준다고 한다.

 

정말 그렇다!

심지어 파이썬까지도 챕터를 하나 할당해서 알려주고 있다!!! 와우~!!

 

이 책이 특히 매력적인 것은 특정 라이브러리 사용을 최소화하고,

파이썬 코어 중심으로 실습 코드를 사용하고 있어서 내부적인 구현 사항에 대해 잘 살펴볼 수가 있다.

 

특히 이번 리마스터링을 통해 공부하기에 더더욱 좋아졌다.



그동안 이 책이 좋다는 것은 알았지만 출간된지 너무 오래되어 아쉬움이 있던 분들은

지금 바로 딥러닝에 대해서 진지하게 공부할 수 있도록 업데이트된 따끈따끈한 책이 등장했으니 지금 당장 구매를 !!!


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo