친절한 딥러닝 수학 - 인공 신경망 이해를 위한 기초 수학
다테이시 겐고 지음, 김형민 옮김 / 한빛미디어 / 2021년 3월
평점 :
장바구니담기


친절한 딥러닝 수학
지은이 다테이시 겐고
옮긴이 김형민
펴낸곳 한빛미디어(주)
초판 1쇄 발행 2021년 3월 2일

AI가 인공지능이고 딥러닝은 인공지능 알파고가 학습한 과정이라는 정도의 이해 수준이었던 나에게 딥러닝의 개념을 확실하게 가르쳐준 책이다.
수학은 부록을 보고 이해하는 수준으로 넘어가고 본문에 나오는 수식들도 흐름만 따라가는 정도로 읽었다.

신경망은 머신러닝 알고리즘 중의 하나다.
지금까지 존재하고 있지 않던 혁신 기술이 아니라 다른 알고리즘과 마친가지로 회귀나 분류 문제를 해결하는 과정이다.
신경망이라는 건 유닛(뉴런이라고 생각하면 된다)들이 서로 연결된 것이고 그 유닛들 사이의 가중치를 학습하기 위해 머신러닝을 사용한다.
신경망의 원형은 1950년대에 처음 아이디어가 나와 한때 유행했던 퍼셉트론이다. 하지만 퍼셉트론은 단순한 문제밖에 풀 수 없는 단점으로 점점 잊혀져 갔다. 그러다 1980년대에 오차역전법이라는 방법으로 신경망을 학습시킬수 있다는걸 알게 되면서 다시 유행했다가 신경망 훈련에 필요한 학습 데이터가 부족해 다시 겨울이 시작 되었다. 2000년대에 인터넷이 보급되면서 많은 데이터를 비교적 쉽게 얻게 되면서 퍼셉트론은 다시 인기를 끌고 진보하게 된다.
퍼셉트론의 유닛을 겹쳐서 층을 늘리면 다층 퍼셉트론이 되고 이것이 신경망이다.
심층신경망의 가중치를 학습시키는 것을 딥러닝이라 한다.
신경망에 필요한 수학 지식은 확률과 미분, 선형대수의 기초 정도 이다.
신경망의 계산은 입력값에 가중치 행렬과 편향을 적용한 뒤 활성화 함수에 통과시키는 과정을 층마다 반복하면 된다.
행렬의 곱셈, 백터의 덧셈, 활성화 함수의 계산은 컴퓨터가 하므로 그 과정을 이해하고 프로그래밍 언어로 구현하기만 하면 된다.
정답이 예상했던 것과 달라 가중치나 편향을 갱신해서 예상한 답에 가까이 간다는 방식은 머신러닝의 알고리즘이 학습하는것과 똑같다.
가중치와 편향의 학습은 미분을 이용해서 오차의 합을 가장 작게 하는 것이다.
입력이미지와 가중치를 곱해서 더한 뒤 활성화 함수를 통과 시키는 과정을 반복하는것이 합성곱 신경망이라고 이해하면 된다.

한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.

댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo