케라스로 구현하는 딥러닝 - 예제를 따라 하며 배우는 딥러닝 인공신경망
김성진 지음 / 한빛미디어 / 2022년 4월
평점 :
장바구니담기


사실 그동안 케라스+딥러닝 조합의 책들을 많이 보았다.


이 책에서는 ANN, DNN, CNN, RNN, AE, GAN, UNET, RL, QAI를 구현하는 방법을 다루고 있어서 목차에서부터 눈길을 끌었다. 입문자부터 볼 수 있는 책들에서 전반부(기본편)의 내용을 다룬 것은 많이 접했지만 후반부(심화편) 내용은 보지 못했기 때문이다. 그래서 강화학습(RL)과 QAI에 집중해서 훑어보았다.


각 챕터마나  먼저 원리를 설명하고, 필요한 개념을 설명한다. 실제 구현에서도 각 단계에 따라 코드와 설명이 있고, 마지막에 전체 코드를 훑어보며 정리할 수 있게 되어있다. 그리고 '마치며'를 통해 학습한 내용을 간략하게 정리한다. 코드와 설명이 함께 제공되고 있기 때문에 저자의 깃허브를 방문하면 더 도움이 된다. 친절하게 학습하는 방법까지 설명해두었다. 코드에서 이해가지 않는 부분이 있으면 설명을 찾아갈 수 있게끔 표시해두었다. 이런 세심함이라니....


8장까지는 차근차근 따라가면 딥러닝 입문자라고 하더라도 무리없이 따라갈 수 있는 내용으로 보인다. 책의 크기는 크지 않지만 담을 내용은 다 담았다는 생각이다. 9장에서는 활용 시 발생할 수 있는 문제를 효율적으로 해결할 수 있는 방법을 제시하고 있다. 이미지 데이터 증강하기, 미리 학습한 모델 사용하기, 간단한 신규 계층 만들기, 학습 가능한 신규 계층 만들기, 케라스의 확장된 기능 이용하기가 그것이다. 여기에 사용된 것처럼 클래스를 상속한다든가 백엔드(backend) 함수를 이용하는 방법을 직접 구현해본 적은 없어서 신선했다. 딥러닝 보다는 케라스 자체에 대해 좀 더 파봐야 겠다는 생각이 들었다. 10장 강화학습의 Gym 같은 경우에도 만들어진 코드를 가져다가 실행해보고 원리만 살짝 살펴본 적은 있는데 친절한 설명이 곁들여져 있어서 그 의미를 더 잘 알 수 있었다. 11장 양자인공지능은 완전 처음 접하는 내용이었지만 수식과 그림으로 잘 설명되어 있다.


다른 책이나 강의 등을 통해 어느 정도 해본 사람도 책의 첫장부터 차근차근 따라가며 정리해보기에 좋은 책이다. 혹시라도 절판된 <코딩셰프의 3분 딥러닝, 케라스맛> 책을 갖고 계신 분이라면 10장, 11장 위주로 보면 되겠다. 그리고 개념 자체를 처음 접하는 독자라면 원리 설명 부분에서 살짝 갈증을 느낄 수도 있을 것 같다. 작은 책 안에 방대한 양을 담은 책이므로, 세부적인 궁금증은 추가 검색으로 갈증을 해소하시기 바란다.


한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
이것이 자료구조+알고리즘이다 with C 언어 - 문제 해결 능력을 키워주는 자료구조+알고리즘 입문서 이것이 시리즈
박상현 지음 / 한빛미디어 / 2022년 8월
평점 :
장바구니담기


C언어를 가르치고 있는데, 2학기에는 좀 더 다양한 예제를 활용해 보고자 해서 이 책을 선택했다. 기초적인 내용들을 배우고 포인터를 본격적으로 활용하고자 할 때 리스트, 스택, 큐와 같은 자료구조를 구현해보지 않을 수는 없으므로. 그리고 간단한 정렬과 탐색도 연습한다. 물론 자료구조, 알고리즘 과목이 따로 있다. 하지만 처음 C언어를 배우면서도 이런 예제 위주로 연습을 하다 보면 나중에 해당 과목을 수강할 때 도움이 많이 되리라 생각한다. 대부분의 독자들은 아마 자료구조와 알고리즘 두 마리 토끼를 잡기 위해 이 책을 선택하겠지만, 나의 경우에는 C언어의 입장에서 이 책을 살펴보았다.


보통 책이 Chapter 1부터 시작하는데 이 책에는 Chapter 0이 있다. <알아두면 쓸 데 있는 자료구조와 알고리즘>이라는 제목으 0챕터에서는 자료구조와 알고리즘의 정이, 그리고 C 언어로 메모리를 다루는 방법에 대해서 설명을 하고 있다. 오리엔테이션의 느낌으로. C언어 문법에 익숙하지 않은 사람도 가볍게 구조체와 포인터, 메모리할당과 해제에 대해 연습해 볼 수 있다.


1장부터 4장까지는 자료구조 파트로 리스트, 스택, 큐, 트리 구조를 다루고 있고, 5장부터 10장까지는 각종 정렬 알고리즘, 탐색 알고리즘, 우선순위 큐와 힙, 해시 테이블, 그래프 그리고 문자열 탐색에 대해 다룬다. 마지막 파트인 11장 부터 15장까지에서는 알고리즘 설계 기법들을 설명하고 있는데, 알고리즘의 성능 분석, 분할 정복, 동적계획법, 탐욕 알고리즘, 백트레킹을 소개하고 있다.


나는 특히 연습문제로 어떤 것들이 주어졌는지에 관심이 많은데, 개념을 설명하면서도 예제 코드를 제시하고 있지만, 이렇게 연습문제를 통해서 개념을 더 다질 수 있다. 개념을 잘 이해하고 있는지 묻는 문제와 주어진 코드를 수정/개선하는 문제들로 이루어져 있다.


레드 블랙 트리에 삼촌 노드, 할아버지 노드라는 표현을 사용한 것도 재밌지만^^ 노드 삽입/삭제도 코드로 구현해 볼 수 있게 설명이 자세히 되어 있다. 레드블랙 특성에 대해서만 설명하고 넘어가는 책도 많이 보았는데.


동적계획법 장에서는 분할정복 기법이나 재귀를 이용하는 것과는 어떻게 다른지를 비교해서 설명하고 있다. 단지 이미 구해놓은 값을 활용한다는 말에만 집중해서 "재귀가 동적계획법과 같은 것 아닌가요?" 하는 학생들도 많이 있는데 코드로 차이를 설명해 준다.


이 책은 C언어 기초문법을 배운 후 좀 더 연습해 보고 싶은 학생, 자료구조와 알고리즘을 본격적으로 배우려고 하는 학생에게 추천한다. 한 권의 책에 자료구조와 알고리즘을 모두 담고 있기 때문에 이 한 권으로는 만족하지 못할 수도 있다. 하지만 시작하는 책으로는 참 좋을 것 같다.


한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
비즈니스 데이터 과학 - 비즈니스 의사결정을 위한 통계학, 경제학, 인공지능의 만남
맷 태디 지음, 이준용 옮김 / 한빛미디어 / 2022년 6월
평점 :
장바구니담기


이달에 접하게 된 책은 <비즈니스 데이터 과학>이다. 한빛 덕분에 다양한 책들을 보게 된다.


우선 시작 부분(14쪽)에서 표기에 대한 안내를 표로 깔끔하게 정리해줘서 책을 읽는데 도움이 되었다.



회귀, 분류, 군집화, PCA, 텍스트 데이터 처리, 트리기반 알고리즘 그리고 마지막으로 인공지능에 대한 기본적인 설명까지 코드와 수식, 이미지를 적절히 넣어서 잘 보여주고 있다. 물론 R을 사용해서 파이썬 기반인 나에게 당혹감을 선물한 것은 덤....이지만, "이 책은 R 사용법을 배우기 위한 책이 아니다....이 책은 데이터 과학을 수행하는 방법에 관한 책이다" 라는 말에 힘을 얻고 읽어 보았다.


1장의 불확실성, 5장의 실험, 6장의 제어라는 제목이 좀 특이하게 느껴져서 그 부분을 먼저 살펴보았다. (나머지 제목들은 너무나 익숙한 제목들이다)


아, 통계에 대한 기본 지식이 없으면 1장부터 읽기가 버겁다^^(그래서 2.4부터 읽고 다시 돌아오기를 권하기도 한다) 먼저 빈도주의 관점에서 불확실성에 중점을 두고 부트스트랩을 이용한 리샘플링, 가설 검정, 거짓 발견 비율(FDR, false discovery rate) 의 조절에 대해 설명해주고, 다음으로는 빈도주의에 비해서는 비즈니스 데이터 과학에서 더 큰 역할을 하고 있으며, 반복적인 시행 보다는 주관적인 믿음을 바탕으로 한 베이지안 추론에 대해서 설명한다.


앞장에서 설명한 회귀, 분류의 경우 과거 데이터에서 패턴을 발견해 내고 있고, 이런 패턴은 미래가 대부분 과거와 비슷하다는 가정 하에서 미래를 예측하는 데 유용하게 사용된다. 그런데 비즈니스나 경제 시스템에서는 현재의 행동이 미래를 바꾸기 때문에 과거와는 다른 미래를 예측할 수 있어야 한다며 [5장 실험]을 시작한다. 반사실적인 예측, 즉 '만일 ~라면'이라는 질문에 대해 대답하길 원한다. 가격을 P0 대신 P1로 변경하면 매출이 어떻게 달라질까에 대해 답하는 문제이다. 이 방법으로 무작위 대조 시험에 대해 설명한다. 다음으로는 두 가지 유사한 상황에 대한 시나리오를 만들어 실험을 한다. "비록 다른 장소지만 두 장소의 처리 전 차이를 모델링 할 수 있드면 처리 후 변화에 대한 인과적 해석을 할 수 있지 않을까?" 하는 가정에서 만든 시나리오(이중차분 분석), 사회보장제도 혜택을 아쉽게 놓치는 사람(처리군)과 간신히 자격이 되어서 혜택을 보는 사람(대조군)의 두 그룹을 만들어 비교하는 시나리오(회귀불연속성 추정)이다. 그리고 마지막으로 '도구 변수'의 개념으로 설명한다.


[6장 제어] 안타깝게도 현실에서는 '실험' 없이 과거 데이터를 기반으로 향후 활동에 대해 결정을 내려야만 한다. 그래서 처리를 설정하는 실험을 하는 대신 과거에 무슨 일이 있었는지를 '관찰'한다. 이 장에서는 어느 정도 믿을 수 있다고 알려진 방법과 원칙, 머신러닝 도구 등을 사용해서 분석하는 방법을 다루고 있다. 조건부 무시가능성과 선형처리 효과, 고차원 교란 조정, 표본 분할과 직교 머신러닝, 이종 처리 효과, 합성 제어 등에 꽤 많은 분량을 할애한다. 이 부분은 사실 좀 더 시간을 두고 다시 읽어봐야 할 것 같다.


마지막으로 한 가지 웃음 포인트는 '인수분해'라고 하는 아련한 단어였다. 얼마만에 들어보는 단어인지^^ 중고등학교 수학 시간에 거의 기계적으로 인수분해를 했었는데, 7장을 시작하며 써있었던 "이 장에서는 각 x에 대한 기댓값을 적은 수의 인수의 합으로 나누는 다양한 인수분해 방법을 살펴본다"는 문구를 읽는 순간 머릿속에 어떤 그림이 그려지면서 머리가 단순해지는 신기한 기분을 느꼈다.

통계에 대한 지식이 없거나 통계용어에 익숙하지 않은 사람들은 [10장 인공지능]을 먼저 읽고 앞부분을 봐도 좋을 것 같다.




댓글(0) 먼댓글(0) 좋아요(1)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
구글 BERT의 정석 - 인공지능, 자연어 처리를 위한 BERT의 모든 것
수다르산 라비찬디란 지음, 전희원.정승환.김형준 옮김 / 한빛미디어 / 2021년 11월
평점 :
절판


이달에 받은 책은 <구글 BERT의 정석>

마침 자연어처리, 고급자연어처리, 정보검색 등 자연어처리에 관한 과목들을 공부하고 있어서 꼭 읽어보고 싶었다. 


트랜스포머에 관한 이야기가 빠질 수는 없지. 트랜스포머에서 인코더 부분만 가져온 것이 BERT(Bidirectional Encoder Representations from Transformers)이기 때문이다. 트랜스포머의 인코더 부분, 디코더 부분 설명에 이어 BERT 이해하기, 활용하기 부분이 나오고 BERT에서 파생된 모델인 ALBERT, RoBERTs, ELECTRA, SpanBERT가 소개된다. 여기까지가 책의 절반을 차지한다.

'지식 증류'라는 표현은 좀 낯선데 Knowledge Distillation은 낯익다. (많이 쓰는 표현이기는 한데 꼭 이렇게 번역해서 써야만 하는 걸까?) 여기에서 Teacher와 Student 개념이 나온다.


마지막 Part 3은 BERT를 적용하는 단계로서 텍스트 요약, 다국어, 언어별 BERT, sentence-BERT, domain-BERT가 소개된다. 한국어 언어 모델인 KoBERT, KoGPT2, KoBART에 대한 이야기도 나오는데 내가 참고하고 싶었던 부분이 바로 이 부분이라 반가웠다. 비록 소스코드가 제공되기는 하지만 각 내용들에 대한 설명은 반 페이지~한 페이지 정도라는 것은 아쉬움이 든다. 

결과적으로 다루고 있는 영역은 굉장히 다양한데 실제 깊이 알고 싶었던 내용에 대한 설명은 살짝 부족한 느낌이....목차를 보고 기대를 많이 했었는데.^^

자연어처리, 트랜스포머, BERT에 대해 넓게 훑고 싶어하는 사람에게 권한다.  흐름을 이해하고 개념을 잡는 데에는 도움이 될 것이다.



​한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo
 
 
 
혼자 공부하는 파이썬 - 1:1 과외하듯 배우는 프로그래밍 자습서, 개정판 혼자 공부하는 시리즈
윤인성 지음 / 한빛미디어 / 2022년 6월
평점 :
장바구니담기


<혼자 공부하는 파이썬> 개정판이 2022년 6월 1일자로 나왔다.



한빛미디어의 "혼자 공부하는" 시리즈는 다른 말이 필요 없다고 생각한다. 말 그대로 '혼자 공부할 수 있게' 만든 책이기 때문이다. 혼자 공부하기 어려워하는 사람들을 위해 '혼공단'이라는 스터디 모임을 하기도 하고(온라인으로 미션을 수행하고 인증하는 형식), 강의 영상도 제공해 준다. 개정 전의 영상도 있지만, 개정 후의 영상도 다시 업로드 중이다. 나처럼 강의로 먹고 사는 사람들은 어쩌라고...ㅋㅋㅋㅋㅋㅋ

개정판의 베타리더에 참여했는데, "정말 입문자의 수준에 맞게, 갑자기 건너 뛰는 것 없이 난이도 조절을 잘 하며 자연스럽게 흘러가는가?"에 초첨을 맞춰달라는 요청이 있었다. 그만큼 입문자, 초보자들을 위해 신경써서 만든 책이라는 얘기다. 도전 문제를 통해 응용실력을 쌓고, 용어노트에 기억해야 하는것들을 메모하며 공부하게 되어 있어서 (혼공단, 강의영상과는 별개로) 입문자들에게 좋은 책이라고 생각한다. 코딩을 배우긴 배워야겠는데, 어떤 언어로 시작해야 할지 망설이는 분에게 첫 언어로 '파이썬'을 권하고, 어떻게 시작해야 할지 모르겠는 분에게 입문서로 '혼자 공부하는 파이썬'을 권한다.


공부하다가 슬럼프가 오면 '혼공단 모집 안 하나?' 기웃거리시고, 기존 버전이라도 틀은 크게 바뀐 것이 없으니 영상을 보면서 다시 마음을 다잡아 끝까지 완공하시기를 바란다. 혼공해냄, 이거 은근히 매력있다.



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo