머신러닝 파워드 애플리케이션 - 아이디어에서부터 완성된 제품까지, 강력한 머신러닝 애플리케이션 구축 과정 배우기
에마뉘엘 아메장 지음, 박해선 옮김 / 한빛미디어 / 2021년 9월
평점 :
장바구니담기


 [도서 소개]

머신러닝 기반 애플리케이션을 설계, 구축, 배포하는 과정에 필요한 모든 기술을 설명하는 책이다. 초기 아이디어가 제품으로 개발되기까지의 과정을 머신러닝 에디터 예제 프로젝트를 통해 순서대로 배운다. 데이터 과학자, 소프트웨어 엔지니어, 제품 관리자가 머신러닝 애플리케이션을 단계별로 구현하는 데 필요한 도구와 실무에서 맞닥뜨리게 되는 도전 과제와 모범 사례를 살펴본다. 유용한 코드와 친절한 그림, 업계 리더와의 인터뷰를 통해 실용적인 머신러닝 개념을 터득해 본인만의 머신러닝 애플리케이션을 자신 있게 구현해보자.


[대상 독자]

- 프로그래밍 경험과 머신러닝 기초 지식을 가진 누구나

- 데이터 과학자, 머신러닝 엔지니어로 현업에 종사하는 개발자

- 코딩은 모르지만 데이터 과학자와 함께 일해야 하는 직군 


[주요 내용]

- 제품의 목표를 정의하고 머신러닝 문제를 설정합니다.

- 첫 번째 엔드투엔드 파이프라인을 빠르게 만들어 초기 데이터셋을 획득합니다.

- 머신러닝 모델을 훈련, 평가하고 성능 병목을 해결합니다.

- 제품 환경에 모델을 배포하고 모니터링합니다.


[추천평]

머신러닝에서 가장 어려운 부분인 문제 정의, 모델 디버깅, 배포를 건너뛰는 책은 너무나 많습니다. 하지만 이 책은 이런 문제에 초점을 맞춰 이야기를 풀어갑니다. 이 책을 읽으면 아이디어에 불과했던 프로젝트를 큰 영향을 발휘하는 애플리케이션으로 만들 수 있습니다.

-알렉산더 구드(Intuit 데이터 과학자)


머신러닝 모델을 도입하는 방법, 잘못되기 쉬운 부분과 특별히 주의해야 할 사항에 대한 실용적인 조언을 찾고 있다면 바로 이 책이 답입니다. 10년 전에 이 책을 읽었더라면, 교훈을 찾아 헤매던 시간을 단축할 수 있었을 겁니다.

-루카스 텐서(트위치 ML 수석 매니저)


[서평]

머신러닝 파워드 애플리케이션은 머신러닝 기반 애플리케이션을 사용하는 목적과 만드는 방법 까지 배울수 있다. 파트 1에서는 올바른 머신러닝 접근 방법에 대해서 설명 하고 있다. 먼저 어떤 작업이 가능 한지 예상을 하고 작업 범위와 문제점에 대해서 예상을 하며 계획을 수립하는걸 배운다. 파트2에서는 초기 프로토타입 제작에 대해서 배웁니다. 먼저 End To End 파이프라인 만들기를 합니다. 가장 쉬운 프로토타입을 만들고 워크플로 테스트를 합니다. 초기 데이터셋을 준비하고 레이블링으로 데이터 트렌드를 찾고 데이터를 활용한 특성 생성과 모델링을 합니다. 파트3에서는 모델 훈련과 평가 그리고 머신러닝 문제 디버깅, 분류기를 사용한 글쓰기 추천 모델을 만드는걸 배웁니다. 파트4에서는 모델 배포시 고려되는 사항에 대해서 배우고 서버, 클라이언트 배포등 하이브리드 방법까지 학습 합니다. 마지막으로 모니터링과 머신러닝을 위한 CI/CD 모델 업데이트 구축하는 방법을 학습합니다.


머신러닝 파워드 애플리케이션은 처음 아이디어에서 부터 머신러닝 애플리케이션 개발/배포까지 모든 과정을 배울수 있는 책으로 기존의 레거시 앱을 어떻게 머신러닝 애플리케이션으로 만드는지 굼궁한 독자라면 많은 가장 좋은 참고서가 될것이라 생각합니다.


 "한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
공유하기 북마크하기찜하기 thankstoThanksTo