처음 처음 | 이전 이전 | 1 | 2 |다음 다음 | 마지막 마지막
핸즈온 머신러닝 - 전2권 - 사이킷런, 케라스, 텐서플로 2로 완벽 이해하는 머신러닝, 딥러닝 이론 & 실무, 3판 O'reilly 오라일리 (한빛미디어)
오렐리앙 제롱 지음, 박해선 옮김 / 한빛미디어 / 2023년 9월
평점 :
장바구니담기


매번 느끼지만, 머신러닝과 딥러닝을 가장 공부하기 좋은 시기는 언제나 바로 오늘입니다 (고퀄리티의 학습 자료가 점점 더 많이 생기고 있어서). 이번에 서평으로 작성할 ‘핸즈온 머신러닝 (3판)’은 1권, 2권으로 나뉘어 있는 것이 특징으로, 상당히 두꺼운 책이랍니다.

삶을 그래디언트에 비유하여 표현한 옮긴이의 말은 깊은 인상을 남겼는데요, 불안하며 방향을 찾아 나아가는 청년과 안정적이지만 속도가 느려진 사회인의 삶을 그래디언트와 비교하였습니다. 그러나 저는 우리의 삶은 그래디언트처럼 단 한 곳을 향해 가는 것이 아니기에, 너무 불안할 필요가 없다고 느낀답니다. 그래디언트의 목적지는 정해져 있지만, 우리에게는 여러 경로와 선택이 있으며, 그 중 어느 것도 평가될 수 없는 가치를 가지고 있기 때문입니다.

‘핸즈온 머신러닝’이 기존에도 머신러닝과 딥러닝 공부에 많이 추천되던 책이었음은 알고 있었습니다. 수년간 추천되왔기 때문에 빠르게 변화하는 딥러닝의 트렌드를 반영하기보다는, 이 책은 주로 기본적이고 전통적인 내용을 다룰 것이라고 생각해왔었답니다! 그런데 (위 이미지를 보다시피) 1판->2판->3판 변경 사항을 보며 머신러닝과 딥러닝 트랜드 학습을 반영하여 지속적인 업데이트가 이루어지고 있다는 사실을 알고 놀랐습니다. (오랫동안 사랑받아온 이유가 여기에 있었을지도 모르겠네요.) 가령, 3판에는 어텐션은 물론, ViT, GAN, 그리고 Stable Diffusion 내용까지 추가되어 있었습니다. 또 이론 지식 못지않게 실습에 비중을 크게 두고 있다는 점도 장점으로 느껴졌습니다.

많은 분야의 공부가 그렇겠지만, 머신러닝/딥러닝을 공부하기 위해서 알아야 할 내용이 방대한데요. 한 두가지 자료를 졸업하는 것만으로는 와닿을 정도로 이해하기가 어려워서 다양한 관점에서 설명하는 다양한 자료가 동반되어야 하는 것이 일반적입니다. 그걸 아는 저자는 친절하게도 이 책과 함께 공부할 수 있는 참고 자료를 이렇게나 많이 소개해두었습니다.

핸즈온 머신러닝 1권에서는 딥러닝의 선행지식이라고 할 수 있는 머신러닝을 기초에 초점을 맞추어 아홉 챕터에 걸쳐 다루고 있습니다. 관련 수학 지식은 깊게 다루는 편은 아니지만, 해당 내용을 이해할 정도로는 다루고 넘어가는 편이었고요. 모든 내용은 코드와 함께 구체적으로 설명되어 있어서 코드에 진심인 것이 느껴지는 책이었습니다.

또한, 복잡한 개념은 도식을 활용하여 직관적으로 설명하려고 노력한 것이 보였답니다. (경험상 친절하다고 느껴지는 책일수록 도식 활용이 잘 되어있는 편이더라고요.)

이 책의 가장 특별하다고 할 수 있는 부분은 각 챕터 마지막에 수록되어있는 연습문제인데요! 보다시피 지식을 잘 숙지했는지를 테스트하는 이론 문제부터, 직접 코드를 작성해보는 실습 문제도 포함되어 있어, 챕터별 학습을 철저히 하는데 도움을 줍니다.

연습문제에 정말 버릴 것이 없어 보였답니다. 이미 머신러닝/딥러닝을 어느정도 공부해본 사람이라면 연습문제를 보며 복습을 해봐도 좋을 것 같습니다. 또 머신러닝/딥러닝 관련 직무 면접을 준비하는 사람들에게도 상당히 유용할 것 같다는 생각이 들었습니다.

1권에서 딥러닝은 간단한 수준에서 introduction 정도만 하고 마무리됩니다. 머신러닝으로 충분히 문제를 해결할 수 있는 기술자라면, 1권에서 소개되는 내용으로 딥러닝에 살짝 발만 담구어 보는 것 만으로도 충분할 것 같고요. 딥러닝을 공부해야하는 사람이라면 1권 학습을 마친 뒤 2권을 이어서 학습하면 됩니다.

2권에서 본격적으로 딥러닝의 이야기가 시작됩니다. NLP보다는 CV에 초점이 맞춰져 있는 편이고,  딥러닝을 처음 배울 때 만나게 되는 CNN, RNN과 같은 기본적인 모델부터 비교적 최신 모델인 GAN과 디퓨전(확산) 모델, 그리고 강화학습까지 다루고 있어서 꽤 최근의 딥러닝 트렌드까지 맛보기에 충분한 책입니다.

추천 대상

딥러닝 바이블 같은 책입니다. 텐서플로 유저들에게 특히 강추하며, 파이토치를 메인으로 사용하는 사람에게도 (어차피 텐서플로도 알아볼 수준은 되어야 하는 세상이라) 추천하고 싶은 책입니다. 또한 머신러닝과 딥러닝을 처음 배우려는 사람들, 체계적인 지식을 쌓고자 하는 중급자, 그리고 기존 지식을 복습하고 싶은 상급 사용자들 모두에게 추천할 수 있을 정도로 다양한 활용이 가능한 것도 장점인데요. 깊이 있는 이론 설명과 완벽에 가까운 코드 제공, 그리고 풍부한 연습문제 덕분에, 자신의 레벨에 맞게 활용하면 이 책 하나만으로 다양한 학습을 해보실 수 있을 것 같습니다. (여느 AI 부트캠프 수료보다 AI 지식을 공부하는 데에는 더 좋은 선택지가 될 수도 있어 보일 정도로요.)

초급자라면 혼자보다는 그룹 스터디같은 장치가 있으면 훨씬 공부하기 편할 듯 하고, 중급/상급자라면 체계적인 공부를 한번 하고자 하는 사람은 혼자 공부해도 충분할 것으로 보입니다. 저 본인 또한 지식을 보다 체계적으로 부트캠프 수강생들에게 설명하기 위해 이 책을 옆에 끼고 틈틈히 공부하게 될 것 같네요:)

“한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.”


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
데이터 과학을 위한 파이썬과 R - 오픈소스를 활용한 데이터 분석, 시각화, 머신러닝 | 파이썬-R 사전 부록 제공
릭 슈카페타.보이안 앙겔로프 지음, 임혜연 옮김 / 한빛미디어 / 2022년 10월
평점 :
장바구니담기


최근 1:1 데이터 분석 레슨과 멘토링을 사이드잡으로 진행중인데, 3월 서평단 도서 목록 중 <데이터 과학을 위한 파이썬과 R> 이라는 제목을 보자마자 고를 수 밖에 없었습니다. 인공지능을 공부하는 사람들에게 파이썬은 기본이 되는 도구이지만, 데이터 분석 분야에서는 R 또한 주류로서 많이 사용되는데요, R을 사용해본 경험이 거의 없다보니 이번 기회에 R이 파이썬보다 더 잘하는 것이 무엇일까 배워보기로 했습니다. 데이터 분석 멘토링 요청을 해오시는 분들 중 파이썬은 모르는데 R 사용 경험은 있는 분들도 계시다는 점이 흥미롭기도 해서, 이번 기회에 데이터 분석 멘토링 실력을 보완해보기로 했습니다.

이 책의 특징

이 책의 특징은 파이썬과 R 언어 중 한개만 알고 있는 사람들을 위주로 타겟팅하여, 원래 익숙한 언어에서 쉽게 다른 한개의 언어로 지식을 확장시킬 수 있는 데 포커스를 맞추었습니다. 따라서 파이썬과 R을 아예 처음 접하는 사람이라면 어느정도 프로그래밍 경험, 또는 데이터 분석 경험이 있으면 조금 더 직관적으로 이해하는데 도움이 될 것 같습니다. 그럼에도 불구하고 어쨌든 기초 지식을 위주로 작성된 서적이어서 큰 어려움은 없을 듯 합니다.

데이터 분석에서 R과 Python이 활약하는 방법

R: 태초부터 통계 분석을 위해 태어난 프로그래밍 언어.

파이썬 (Python): 사용하기 편리한 문법을 바탕으로 광범위하게 사용되겠다는 분명한 목적을 두고 만들어진 프로그래밍 언어.

탄생한 목적에 맞게 파이썬은 웹 개발, 게임, 시스템 관리, 데이터 과학, 딥러닝 엔지니어링 등 현재 수많은 분야에서 활약하고 있습니다. 필자는 파이썬으로 데이터 분석으로 많은 인기를 끄는 것은 온전히 데이터 과학에 사용되는 기능 때문만이 아니라, 범용 언어로써 기존 역할에 부분적으로 ‘편승’하여 데이터 과학 분야로 진입했다고 봅니다. 그러니까, 이미 파이썬을 사용하고 있던 엔지니어들에게 접근성이 좋기 때문에 원활한 커뮤니케이션을 위해서 파이썬을 선택하는 사람들이 많았다는 뜻입니다. 배열 데이터를 처리하기 위한 파이썬 패키지는 2005년 numpy가 등장한 이후부터서야 천천히 데이터 과학에서의 자리를 확고히 잡아가기 시작했다고 합니다.

R과 파이썬 모두 high-level 프로그래밍 언어로써 배우기가 쉽고 사용이 편리하다는 공통점이 있습니다. 각각의 장단점이 있어서 둘 중에 무엇을 사용해야한다는 절대적인 룰은 없으나, 전문적으로 데이터 분석을 하는 분석가라면 두 언어 다 익혀서 양단의 장점을 극대화시키면 분석 스킬을 끌어올리는 데 큰 도움을 받을 수 있을 것 같다는 생각이 들었습니다.

분야별 승리자 알아보기

데이터 EDA는 R이 승자: EDA는 데이터 분석의 필수 기본 단계인데, 데이터 시각화를 훌륭하게 수행하는 R이 EDA에서는 파이썬을 제칩니다. 파이썬을 이용자라면 알지만, 꽤 발전해왔다 하더라도 matplotlib을 사용해 데이터를 플로팅 하는 것은 꽤나 번거롭고 덜 직관적이죠. 반면 R의 ggplot2, leaflet, plotly 등 데이터 시각화 패키지는 단 몇줄의 코드만으로 시각화 작업을 쉽고 간단히 수행한다고 합니다.

머신러닝에서는 파이썬이 승자: 최근 데이터 과학은 거의 머신러닝과 동일한 언어로 쓰일 정도인데, 딥러닝이 유명해지면서 scikit-learn 패키지와 함께 파이썬의 ML 생태계는 급성장을 이루었습니다. 몇줄의 코드만으로 데이터를 불러오고, 파라미터 초기화에 더불어 모델 피팅까지 효과적으로 수행할 수 있고, 직관적인 문법을 따르기 때문에 다큐먼트를 찾을 시간을 줄이고 코드 작성에 더 집중할 수 있게 도와줍니다.

이 외에 Task 단위로 보면, 이미지 데이터와 텍스트 데이터의 처리는 파이썬이 더 뛰어나고 시계열 데이터와 공간 정보의 처리는 R이 뛰어나다고 합니다. 상호 보완되는 부분이 명확하다보니, 여기까지 알게된 전문 데이터 분석가라면 어떤 것 하나 놓치기가 너무 아쉬울 것 같습니다.

마치며

<데이터 과학을 위한 파이썬과 R> 서적을 통해 파이썬과 R이 데이터 과학 분야에서 서로 상호 보완되는 장점들을 알아볼 수 있었습니다. 전문 데이터 분석가가 아닌 저도 딥러닝 연구자로써 욕심이 나는데요, 특히 EDA에 꼭 써먹어봐야겠다는 생각이 듭니다. 내용이 직관적으로 잘 정리되어 있고 설명도 쉽게 쓰인 책으로, 파이썬과 R의 차이가 궁금하고, 데이터 분석 역량을 기르고 싶은 분석가들에게 추천하고 싶은 책입니다.

“한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.”




댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
업무에 바로 쓰는 AWS 입문 - 핵심 리소스를 통해 쉽게 입문하는 AWS 가이드
김성민 지음 / 한빛미디어 / 2023년 1월
평점 :
장바구니담기


2023년도에도 한빛미디어 서평단 활동을 하게 되었다. 올해 첫 도서로 <업무에 바로 쓰는 AWS 입문> 을 받아보게 되었다. 결론부터 이야기하자면 의무감에 서평을 작성하고 있긴 하지만 누군가에게 추천할만한 책은 아니다. 곳곳에서 완성도가 떨어지는 부분이 많이 발견되어서 내용이 아무리 좋다 한들 누군가에게 권유하고 싶지 않을 것 같다. 특히 도식이 상당히 많이 포함되어 있는데 반해 레이아웃과 디자인에 너무 신경을 쓰지 않아서 가독성이 떨어진다. 글도 잘 다듬어지지 않아서 뚝뚝 끊기는 느낌이 들었다. 책보다는 개인 웹사이트나 블로그에 올라오는 AWS 튜토리얼 게시물에 더 가깝지 않나 싶다.

하지만 분명 이 책에서 도움을 얻을 수 있는 부분들도 있다. “업무에 바로 쓰는…” 이라는 제목에서 알 수 있듯, 실용적인 사용법에 초점을 맞춘 책이다. 실제로 과반수의 페이지가 실습 내용을 담고 있는데, 컴퓨터를 가지고 있다면 누구나 스텝 바이 스텝으로 따라해볼 수 있다. AWS를 이해하기 위해 필요한 데이터베이스와 네트워크 보안 등에 대한 간략한 소개도 포함하고있다. AWS 사용과 관련된 아주 기초적인 내용들만 담고 있기 때문에 AWS가 무엇인지 알아보고 싶은 비전공자들이 입문용으로 공부해볼만 할 것 같다. AWS 자격증을 준비하려고 하는 입문자들 또한 대상 독자가 될 수 있겠다. 다만 이미 현업에서 AWS를 사용하고 있거나 컴퓨터공학 관련 백그라운드를 가진 사람이라면 난이도가 다소 낮기 때문에 얻어갈 내용이 상대적으로 적을 것이다.

회사에서 AWS를 사용해본 경험이 있지만 구체적으로 무엇이 어떤 역할을 하는지 잘 모르고 사용했었는데, 이번 기회에 제대로 알아보기 위해 해당 도서를 신청했다. 모호했던 부분들에 대해 어느정도 clarity를 얻긴 했으나 내용이 상대적으로 쉽고 완성도도 떨어지는 편이어서 한권을 다 훑는데 1시간이 채 걸리지 않았다. 다만 이는 전공자의 입장이기 때문에 AWS를 처음 접하고자 하는 비전공자들은 큰 도움을 얻을 지도 모르겠다. 개인적으로 글과 도식이 개선된다면 훨씬 더 좋은 평을 받을 수 있는 책이라 생각한다.

 “한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.”



댓글(0) 먼댓글(0) 좋아요(2)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
온디바이스 AI
로런스 모로니 지음, 곽도영 외 옮김 / 한빛미디어 / 2022년 11월
평점 :
장바구니담기


기업의 연구팀에서 인턴으로 일할 당시 머신러닝 알고리즘 연구 및 데이터 처리 업무 위주로 맡았는데 당시 엔지니어링의 길이란 그렇게 험악해 보일 수가 없었더랬다. 머신러닝 모델을 개발하는 일도 지금보다 훨씬 복잡했었으나 모델을 서빙하는 것은 정말 맨땅에 헤딩하는 것처럼 보였기 때문에 저쪽은 쳐다도 보면 안되겠다 생각했다. 그런 학계 연구자 입장에서, <온디바이스 AI>는 마치 어플리케이션 엔지니어링을 놀이처럼 구경시켜준 책이었다. 아무리 변화가 빠른 AI 업계라고 해도 몇년만에 서빙하는 일이 이렇게나 재밌어보일 수 있게 간단해졌다니 왠지모를 용기를 얻었다 해야하나.

책에서는 먼저 인공지능의 이론에 대해 간단하게 이야기하고, 온디바이스란 무엇이며 그것의 장단점에 대해 이야기한다. 가령, 네트워크의 지연이 없이 빠르게 처리되어야 하거나 개인정보 보호가 중요한 딥러닝 서비스인 경우 온디바이스, 즉 모바일에 탑재하여 로컬에서 처리할 수 있도록 한다. 반면 모델이 아주 복잡하고 계산량이 많을 경우 서버에 배포하여 클라우드로 데이터를 주고받아야 하는 경우도 있다.

구현 방식에 대해서는 TFLite 위주의 예제를 다루며, 처음부터 끝까지 따라해볼 수 있도록 스샷을 많이 첨부하고 있다. 비전 모델과 언어 모델을 블랙박스 모델처럼 간단히 가져오기만 해서 사용하는 방법과, 각각 안드로이드와 iOS에서 어떻게 구현하는지 빼먹지 않고 모두 설명한다. 또한 데이터 포맷 변환과 같은 엔지니어링 심화 과정도 곳곳에서 담고 있다.

이 책을 추천해주고 싶은 독자는 두 부류다. 첫째, 머신러닝을 모르지만 딥러닝을 어플리케이션에 적용해보고자 하는 모바일 개발자. 둘째, 딥러닝 이론은 잘 알지만 어플리케이션 서빙에는 무지한 연구자. 전자라면 인공지능과 머신러닝의 기초적인 이론에 대해 부담없이 공부해 보고 모바일 서비스에 큰 어려움 없이 적용해 볼 수 있을 것이다. 후자라면 어플리케이션 및 엔지니어링 관점에서 내가 만드는 모델이 서비스에 어떻게 적용되는지 상세하게 구경해볼 수 있다. 튜토리얼의 느낌을 물씬 풍기는 서적인만큼, 스텝 바이 스텝 따라 만들어보며 공부하는 것을 선호하는 사람들에게 더욱 추천한다. 가이드를 따라하기보다 스스로 만져보며 파고드는 스타일이라면 잘 맞지 않을 수도 있다.

“한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다.”



댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
그로킹 심층 강화학습 - 이론과 실제 사이의 틈을 메우다
미겔 모랄레스 지음, 강찬석 옮김 / 한빛미디어 / 2021년 10월
평점 :
장바구니담기


<그로킹 심층 강화학습> 은 강화학습을 연구적으로 이해할 수 있게 도와준다. 연구적이라 함은, 강화학습의 이론과 본질에 포커스를 맞추어 설명하기 때문에 강화학습을 실무에 빠르게 적용하고자 하는 현업자보다는 이론적으로 접근하고자 하는 학생을 위한 책에 가깝다는 뜻이다. 가령, 많은 "빠른 실무를 위한" 서적에서 high-level 위주의 직관적인 그림과 현업에 바로 적용 가능한 코드를 보여줄 때, 이 책에서는 수식적인 설명과 연구적 논의가 많이 등장하며 코드 예제는 최소화 되어있다.

이 책의 저자가 강화학습을 대하는 태도는 각 챕터의 시작만 봐도 어느정도 엿볼 수 있다. 예를 들어 3장은 "전투를 준비하면서 항상 느낀 것은 계획은 쓸모 없는 것이지만, 계획하는 것 자체는 없어서는 안될 중요한 것이었습니다. - 드와이트 D. 아이젠하워" 라는 문구로 시작하는데, 강화학습에서 중요한 문제이면서도 철학적인 고민거리를 던져주는 것이 상당히 흥미로웠다. 또한, 각 챕터의 마지막은 언제나 "트위터에서 만나요!" 라는 소제목의 텍스트 블록으로 마무리한다. 공부한 것에 대해 트위터를 작성하고 저자 본인을 태그하면 리트윗할것이라는 약속을 하며, 각 챕터와 관련된 해시태그를 사용하길 부탁한다. 예를 들어, 제 2장의 관련 해시태그로는 "#gdrl_ch02_tf01" 등을 제안한다. 이 부분에서 저자의 강화학습 필드에 대한 적극성과 열정 또한 느낄 수 있었다.

저자의 설명 스킬 또한 돋보인다. 어떤 개념도 이해시키고야 말겠다 라는 집념이 있는 것처럼 다양한 그래프, 예시를 사용하며 수식도 대충 설명하고 넘어가지 않는다. 사실 개인적으로 "수식은 몰라도 됩니다" / "실전에선 수식이 별로 쓰이지 않습니다" 와 같은 이야기를 하는 책을 선호하지 않는데, 수식 없이 high-level에서만 이해하고 코드를 사용하는 것은 지식 확장에 별로 도움이 되지 않기 때문이다. "잘" 써먹으려면 바닥부터 이해해야 하고, 그러려면 수식을 짚고 넘어가야 한다. 예를 들어 딥러닝 네트워크의 back-propagation을 수식 없이 그림으로만 알고 있다면 back-propagation이 무엇인지 동료에게 설명해야할 때 상당히 곤란할 것 같다. 딥러닝 관련 논문을 이해하기는 물론이고, 간단한 코드 수정도 힘들것이다. 저자는 연구자로서 그것의 중요성을 알기에, 수식을 넘기지 않고 잘 설명하고자 공을 많이 들인 것 같다. 수식 뿐만 아니라 강화학습 개념들이 잘 설명되어있다. 개인적으로 많은 부분의 설명을 빠져들면서 읽었다.

끝으로, 마지막 챕터에서 인상깊었던 저자의 일과 연구에 대한 마음가짐을 이야기하는 부분을 아카이빙하며 이 포스팅을 마치도록 하겠다.

"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."


댓글(0) 먼댓글(0) 좋아요(0)
좋아요
북마크하기찜하기 thankstoThanksTo
 
 
 
처음 처음 | 이전 이전 | 1 | 2 |다음 다음 | 마지막 마지막